478 resultados para Comm
Resumo:
To assess geographic distributions of elements in the Arctic we compared essential and non-essential elements in the livers of polar bears (Ursus maritimus) collected from five regions within Canada in 2002, in Alaska between 1994 and 1999 and from the northwest and east coasts of Greenland between 1988 and 2000. As, Hg, Pb and Se varied with age, and Co and Zn with gender, which limited spatial comparisons across all populations to Cd, which was highest in Greenland bears. Collectively, geographic relationships appeared similar to past studies with little change in concentration over time in Canada and Greenland for most elements; Hg and Se were higher in some Canadian populations in 2002 as compared to 1982 and 1984. Concentrations of most elements in the polar bears did not exceed toxicity thresholds, although Cd and Hg exceeded levels correlated with the formation of hepatic lesions in laboratory animals.
Resumo:
Diatom abundance and species composition were quantitatively studied in two latest Quaternary (~130 ka to the Present) sequences from the continental margin of northwest Africa. Off this region, coastal upwelling is well developed under the influence of the NE trade winds. Variations in diatom abundance in these cores are inferred to represent changes caused by varying degrees of the upwelling fertility. Times of high productivity are marked by high relative frequencies of Chaetoceros, while low productivity is marked by the dominance of Aulacoseira granulata. Upwelling increased during glacial episodes (isotopic stages 2-4 and 6) relative to isotopic stages 1 and 5. During the late Holocene, primary productivity levels are similar to those for Stage 5, but in the early Holocene upwelling intensities seem to have been weaker than today. The paleoproductivity reconstruction based on the diatom record is supported by paleoproductivity estimations based on the organic carbon content of the sediments (Sarnthein et al., 1987).
Resumo:
One of the major shipboard findings during Leg 23 drilling in the Red Sea was the presence of late Miocene evaporites at Sites 225, 227, and 228. The top of the evaporite sequence correlates with a strong reflector (Reflector S) which has been mapped over much of the Red Sea (Ross et al., 1969, Phillips and Ross, 1970). This indicates that the Red Sea appears to be extent. Miocene sediments, including evaporites, are known from a few outcrops along the coastal plains of the Gulf of Suez to lat 14°N (Sadek, 1959, cited in Friedman, 1972; Heybroek, 1965; Friedman, 1972). Along the length of the Red Sea, the presence of Miocene salt is indicated by seismic reflection studies (Lowell and Genik, 1972) and confirmed by drilling. The recently published data from deep exploratory wells (Ahmed, 1972) demonstrate the great thickness of elastics and evaporites which were deposited in the Red Sea depression during Miocene time. The Red Sea evaporites are of the same age as the evaporites found by deep sea drilling (DSDP Leg 13) in the Mediterranean Sea. Therefore, Reflector S in the Red Sea is comparable to Reflector M in the Mediterranean. It is assumed that during Miocene time a connection between these two basins was established (Coleman, this volume) resulting in a similar origin for the evaporites deposited in the Red Sea and in the Mediterranean Sea. The origin of the Mediterranean evaporites has been discussed in great detail (Hsü et al., 1973; Nesteroff, 1973; Friedman, 1973). The formation of evaporites may be interpreted by three different hypotheses. 1) Evaporation of a shallow restricted shelf sea or lagoon which receives inflows from the open ocean. 2) Evaporation of a deep-water basin which is separated from the open ocean by a shallow sill (Schmalz, 1969). 3) Evaporation of playas or salt lakes which are situated in desiccated deep basins isolated from the open ocean (Hsü et al., 1973). The purpose of this study is to show whether one of these models might apply to the formation and deposition of the Red Sea evaporites. Therefore, a detailed petrographic and geochemical investigation was carried out.
Resumo:
Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei)], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.
Resumo:
Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolution of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions.
Resumo:
The calcareous nannofossil biostratigraphy of ODP Leg 177 Sites 1088 and 1090 (Subantarctic sector from the Atlantic Ocean) is discussed. Most nannofossil zonal boundaries of Martini (1971) and Okada and Bukry (1980) were recognized for the studied mid-high-latitude sediments. Conventional low-latitude marker species such as Amaurolithus spp., Discoaster spp., Triquetrorhabdulus spp., Ceratolithus spp. were recorded as rare and scattered, which impeded the development of a detailed nannofossil biostratigraphic zonation of some Miocene and Pliocene intervals. Because of the absence of some primary biostratigraphic marker species, additional second-order bioevents, such as the first occurrence of Calcidiscus macintyrei and the last occurrence of Coccolithus miopelagicus, have been used to approximate the base of zones NN7 and NN8, respectively. Several disconformities disturbing the Pliocene and Miocene intervals of Site 1090 could be determined based on nannofossil distribution although the occurrence of intervals with dissolved nannofloras and low species diversity prevented a reliable age assignment. An acme of small Gephyrocapsa was recognized near the lower/middle Pliocene boundary, close to the NN15-NN16 zonal boundary, presenting an event for further improvement of the calcareous nannofossil biostratigraphy of this interval time. The first occurrence of Pseudoemiliania lacunosa (>4 µm) occurs close to this interval, representing a fairly reliable event to approximate the base of NN15 zone when other biozonal events are absent. A paracme of R. pseudoumbilicus (>7 µm) was detected in the lower Pliocene NN12 and in the upper Miocene NN11. These temporary absences of the species seem to be isochronous between high-latitude and low-middle-latitude areas.
Resumo:
Lakes Prespa and Ohrid, in the Balkan region, are considered to be amongst the oldest lakes in Europe. Both lakes are hydraulically connected via karst aquifers. From Lake Ohrid, several sediment cores up to 15 m long have been studied over the last few years. Here, we document the first long sediment record from nearby Lake Prespa to clarify the influence of Lake Prespa on Lake Ohrid and the environmental history of the region. Radiocarbon dating and dated tephra layers provide robust age control and indicate that the 10.5 m long sediment record from Lake Prespa reaches back to 48 ka. Glacial sedimentation is characterized by low organic matter content and absence of carbonates in the sediments, which indicate oligotrophic conditions in both lakes. Holocene sedimentation is characterized by particularly high carbonate content in Lake Ohrid and by particularly high organic matter content in Lake Prespa, which indicates a shift towards more mesotrophic conditions in the latter. Long-term environmental change and short-term events, such as related to the Heinrich events during the Pleistocene or the 8.2 ka cooling event during the Holocene, are well recorded in both lakes, but are only evident in certain proxies. The comparison of the sediment cores from both lakes indicates that environmental change affects particularly the trophic state of Lake Prespa due to its lower volume and water depth.
Resumo:
Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.
Resumo:
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A reentry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r,synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.
Resumo:
The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.
Resumo:
We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.
Resumo:
The rapid warming of arctic regions during recent decades has been recorded by instrumental monitoring, but the natural climate variability in the past is still sparsely reconstructed across many areas. We have reconstructed past climate changes in subarctic west-central Canada. Stable carbon and oxygen isotope ratios (d13C, d18O) were derived from a single Sphagnum fuscum plant component; alpha-cellulose isolated from stems. Periods of warmer and cooler conditions identified in this region, described in terms of a "Mediaeval Climatic Anomaly" and "Little Ice Age" were registered in the temperature reconstruction based on the d13C record. Some conclusions could be drawn about wet/dry shifts during the same time interval from the d18O record, humification indices and the macrofossil analysis. The results were compared with other proxy data from the vicinity of the study area. The amplitude of the temperature change was similar to that in chironomid based reconstructions, showing c. 6.5 ±2.3 °C variability in July temperatures during the past 6.2 ka.
Resumo:
The Agulhas Leakage represents a significant portion of the warm, surface return flow of the global overturning circulation and thus may be an important feedback in the ocean climate system. Models indicate that reduced leakage could be caused by a stronger Agulhas Current and/or a more upstream (eastward) Agulhas Retroflection, while a weaker Agulhas Current would result in a more westward retroflection and increased leakage. However, data for the Last Glacial Maximum support both a weaker Agulhas Current and less leakage, implying a possible displacement of the retroflection. We present new 87Sr/86Sr results for modern sediments within this region, confirming that the modern pathway of the Agulhas Current, Retroflection, and Leakage can be traced by terrigenous sediment provenance using Sr isotopes. New 87Sr/86Sr data from sediments deposited during the Last Glacial Maximum suggest that the glacial Agulhas Current and Retroflection followed nearly their modern trajectory. The provenance data appear to rule out both a stronger Agulhas Current and a more upstream Agulhas Retroflection. We conclude that the reduced glacial leakage was caused by the weakened Agulhas Current, with no significant change in the retroflection position. This is inconsistent with the model predictions and thus emphasizes the need for further work in this region.
Resumo:
Lower Miocene basaltic glass spherules from DSDP Site 32 pelagic sediments in the eastern Pacific are compositionally diverse, and new analyses and interpretations have been added to those of earlier workers. The spherules are of titanian ferrobasalt which is compositionally similar to highly evolved abyssal basalts and to some oceanic island eruptives, and they were most likely shaped during intense lava fountaining during a number of separate eruptions. These eruptions tapped distinct but related magma batches in terms, for example, of distinctively high TiO2 and FeO* contents. Their age overlaps that of some of the eruptions of the Columbia River Plateau Basalts, but they are compositionally distinct from most of the latter basalts. Although about 15 m.y. old, they show little alteration. The low chlorine and sulfur contents compared to those of abyssal ferrobasalts are consistent with degassing prior to quenching during subaerial eruptions, and rule out production of the spherules by submarine fountaining. Lava fountaining alone is insufficient to account for the distance of about 100 km from even the closest possible seamount source. Instead, large phreatomagmatic eruption columns reaching at least 15 km and including lava fountaining immediately after the initial explosion are required. Alternatively, and deemed less likely, is their deposition by turbidites derived from Pioneer Seamount.
Resumo:
Sedimentary records from California's Northern Channel Islands and the adjacent Santa Barbara Basin (SBB) indicate intense regional biomass burning (wildfire) at the Ållerød-Younger Dryas boundary (~13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present [ka]. Radiocarbon ages will be identified and clearly marked "14C years".). Multiproxy records in SBB Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt ecosystem disruption is evident on the Northern Channel Islands at the Ållerød-Younger Dryas boundary with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human presence on these islands at 13.1-12.9 ka (~11,000-10,900 14C years) is followed by an apparent 600-800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic impact hypothesis [Firestone et al., 2007, doi:10.1073/pnas.0706977104].