854 resultados para Colorectal cancers
Resumo:
The aim of the study was to clarify the occurrence, and etiological and prognostic factors of primary fallopian tube carcinoma (PFTC). We studied the sociodemographic determinants of the incidence of PFTC in Finland and the role of chlamydial infections and human papillomavirus infections as risk factors for PFTC. Serum tumor markers were studied as prognostic factors for PFTC. We also evaluated selected reproductive factors (parity, sterilization and hysterectomy) as risk or protective factors of PFTC. The risks of second primary cancers after PFTC were also studied. The age-adjusted incidence of PFTC in Finland increased to 5.4 / 1,000,000 in 1993 97. The incidence rate was higher in the cities, but the relative rise was higher in rural areas. Women in the two highest social classes showed a 1.8 fold incidence compared with those in the lowest. Women in agriculture and those not working outside the home showed only half the PFTC incidence of those in higher socioeconomic occupations. Pretreatment serum concentrations of hCGβ, CA125 and TATI were evaluated as prognostic markers for PFTC. Elevated hCGβ values (above the 75th percentile, 3.5 pmol/L; OR 2.49, 95% CI 1.22 5.09), stage and histology were strong independent prognostic factors for PFTC. The effects of parity, sterilization and hysterectomy on the risk of PFTC were studied in a case control-study with 573 PFTC cases from the Finnish Cancer Registry. In multivariate analysis parity was the only significant protective factor as regards PFTC, with increasing protection associated with increasing number of deliveries. In univariate analysis sterilization gave borderline protection against PFTC and the protective effect increased with time since the operation. In multivariate analysis the protection did not reach statistical significance. Chlamydial and human papillomavirus (HPV) infections were studied in two separate seroepidemiological case-control studies with 78 PFTC patients. The incidence of women with positive HPV or chlamydial serology was the same in PFTC patients and in the control group and was not found to be a risk factor for PFTC. Finally, the possible risk of a second primary cancer after diagnosis and treatment of PFTC in a cohort of 2084 cases from 13 cancer registries followed for second primary cancers within the period 1943 2000 was studied. In PFTC patients, second primary cancers were 36% more common than expected (SIR 1.36, 95% CI 1.13 1.63). In conclusion, the incidence of PFTC has increased in Finland, especially in higher social classes and among those in certain occupations. Elevated serum hCGβ reflect a worsened prognosis. Parity is a clear protective factor, as is previous sterilization. After PFTC there is a risk of second primary cancers, especially colorectal, breast, lung and bladder cancers and non-lymphoid leukemia. The excess of colorectal and breast cancers after PFTC may indicate common effects of earlier treatments, or they could reflect common effects of lifestyle or genetic, immunological or environmental background.
Resumo:
Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.
Resumo:
Background & objectives: Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and involved in DNA synthesis, DNA repair and DNA methylation. The two common functional polymorphisms of MTHFR, 677C -> T and 1298 A -> C have shown to impact several diseases including cancer. This case-control study was undertaken to analyse the association of the MTHFR gene polymorphisms 677 C -> T and 1298 A -> C and risk of colorectal cancer (CRC).Methods: One hundred patients with a confirmed histopathologic diagnosis of CRC and 86 age and gender matched controls with no history of cancer were taken for this study. DNA was isolated from peripheral blood samples and the genotypes were determined by PCR-RFLP. The risk association was estimated by compounding odds ratio (OR) with 95 per cent confidence interval (CI). Results: Genotype frequency of MTHFR 677 CC, CT and TT were 76.7, 22.1 and 1.16 per cent in controls, and 74,25 and 1.0 per cent among patients. The 'T' allele frequency was 12.21 and 13.5 per cent in controls and patients respectively. The genotype frequency of MTHFR 1298 AA, AC, and CC were 25.6, 58.1 and 16.3 per cent for controls and 22, 70 and 8 per cent for patents respectively. The 'C' allele frequency for 1298 A -> C was 43.0 and 45.3 per cent respectively for controls and patients. The OR for 677 CT was 1.18 (95% CI 0.59-2.32, P = 0.642), OR for 1298 AC was 1.68 (95% CI 0.92-3.08, P = 0.092) and OR for 1298 CC was 0.45(95% CI 0.18-1.12, P = 0.081). The OR for the combined heterozygous state (677 CT and 1298 AC) was 1.18(95% CI 0.52-2.64, P =0.697).Interpretation & conclusion: The frequency of the MTHFR 677 TT genotype is rare as compared to 1298 CC genotype in the population studied. There was no association between 677 C -> T and 1298 A -> C polymorphisms and risk of CRC either individually or in combination. The homozygous state for 1298 A -> C polymorphism appears to slightly lower risk of CRC. This needs to be confirmed with a larger sample size.
Resumo:
Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.
Resumo:
Worldwide and notably in the developed countries, cancer is an increasing cause of morbidity and mortality, being the second most common cause of death after ischemic heart disease. Now and in the future new cancer cases need to be diagnosed earlier. Prognostic factors may be helpful in recognizing and handling those patients who need more aggressive therapy, and it is also desirable to predict treatment response accurately. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein predominantly expressed in malignant tissues and inhibiting protein phosphatase 2A (PP2A) activity; it is a promising target for cancer therapy. The aim of this thesis was to evaluate the prognostic role of CIP2A in solid cancers, and for this purpose to explore expression of CIP2A, and investigating regulation of CIP2A in order to gain insight into signalling pathways leading to alteration in prognosis. Patients diagnosed with gastric, serous ovarian, tongue, or colorectal cancer at Helsinki University Central Hospital were included. Tumour tissue microarrays assembled from specimens from these patients were prepared and stained immunohistochemically for CIP2A protein expression. Associations with clinicopathologic parameters and other biomarkers were explored, and survival analyses were done according to the Kaplan-Meier method. Study of the role of CIP2A in intracellular signalling in vitro involved gastric, ovarian, and tongue cancer cell lines. We found CIP2A to be highly expressed in gastric, ovarian, tongue, and colorectal cancer specimens. CIP2A was associated with clinicopathologic parameters characterizing an aggressive disease, namely advanced stage, high grade, p53 immunopositivity, and high proliferation index. CIP2A led to recognition of gastric, ovarian, and tongue cancer patients with poor prognosis, however, with a cancer type-specific cut-off level for prognostic significance. In tongue cancer, it served as an independent prognostic marker. In contrast, in colorectal cancer, CIP2A provided no prognostic value. In cancer cell lines, CIP2A was highly expressed at both protein and mRNA levels, and promoted cell proliferation and anchorage-independent growth. In gastric cancer, we demonstrated with a MYCER construct in mouse embryo fibroblasts that activation of MYC led to increased CIP2A mRNA expression, and hence we suggested that a positive feedback mechanism between CIP2A and MYC may potentiate and prolong the oncogenic activity of these proteins. We demonstrated in ovarian cancer an association between CIP2A and EGFR protein overexpression and EGFR gene amplification. In ovarian and tongue cancer cells we showed that depletion of EGFR downregulates CIP2A expression. In conclusion, high CIP2A expression occurred frequently among patients with aggressive disease. CIP2A may serve as a prognostic marker in gastric, ovarian, and tongue cancer and thus may help in tailoring therapy for cancer patients. The positive feedback mechanism between CIP2A and MYC, as well as the positive regulation of CIP2A by EGFR, are a few signalling pathways regulating and regulated by CIP2A. These and other mechanisms need to be studied further, however. CIP2A is a potential target for therapy, and its potential role as predictive marker and as a tumour marker in serum requires exploration.
Resumo:
The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.
Resumo:
Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.
Resumo:
Multidrug resistance is a major therapeutic challenge faced in the conventional chemotherapy. Nanocarriers are beneficial in the transport of chemotherapeutics by their ability to bypass the P-gp efflux in cancers. Most of the P-gp inhibitors under phase II clinical trial are facing failures and hence there is a need to develop a suitable carrier to address P-gp efflux in cancer therapy. Herein, we prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin against highly drug resistant HeLa cells. The experimental results revealed that improved cellular uptake, enhanced drug intensity profile with greater percentage of apoptotic cells was attained when doxorubicin loaded magnetic nanocapsules were used in the presence of external magnetic field. Hence, we conclude that this magnetic field assisted nanocapsule system can be used for delivery of chemotherapeutics for potential therapeutic efficacy at minimal dose in multidrug resistant cancers. From the Clinical Editor: Many cancer drugs fail when cancer cells become drug resistant. Indeed, multidrug resistance (MDR) is a major therapeutic challenge. One way that tumor cells attain MDR is by over expression of molecular pumps comprising of P-glycoprotein (P-gp) and multidrug resistant proteins (MRP), which can expel chemotherapeutic drugs out of the cells. In this study, the authors prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin. The results show that there was better drug delivery and efficacy even against MDR tumor cells. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110 and p110 catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110 structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110 and p110, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110 and p110 are evolutionarily divergent; they probably need separate strategies for drug development.
Resumo:
Background: Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods: A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60- mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results: After an exhaustive process of pre-processing to ensure data quality–lost values imputation, probes quality, data smoothing and intraclass variability filtering–the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions: We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).
Resumo:
5 p.
Resumo:
Background: Colorectal cancer (CRC) is a disease of complex aetiology, with much of the expected inherited risk being due to several common low risk variants. Genome-Wide Association Studies (GWAS) have identified 20 CRC risk variants. Nevertheless, these have only been able to explain part of the missing heritability. Moreover, these signals have only been inspected in populations of Northern European origin. Results: Thus, we followed the same approach in a Spanish cohort of 881 cases and 667 controls. Sixty-four variants at 24 loci were found to be associated with CRC at p-values <10-5. We therefore evaluated the 24 loci in another Spanish replication cohort (1481 cases and 1850 controls). Two of these SNPs, rs12080929 at 1p33 (P-replication=0.042; P-pooled=5.523x10(-03); OR (CI95%)=0.866(0.782-0.959)) and rs11987193 at 8p12 (P-replication=0.039; P-pooled=6.985x10(-5); OR (CI95%)=0.786(0.705-0.878)) were replicated in the second Phase, although they did not reach genome-wide statistical significance. Conclusions: We have performed the first CRC GWAS in a Southern European population and by these means we were able to identify two new susceptibility variants at 1p33 and 8p12 loci. These two SNPs are located near the SLC5A9 and DUSP4 loci, respectively, which could be good functional candidates for the association signals. We therefore believe that these two markers constitute good candidates for CRC susceptibility loci and should be further evaluated in other larger datasets. Moreover, we highlight that were these two SNPs true susceptibility variants, they would constitute a decrease in the CRC missing heritability fraction.
Resumo:
8 p.
Resumo:
Background: Lynch syndrome (LS) is an autosomal dominant inherited cancer syndrome characterized by early onset cancers of the colorectum, endometrium and other tumours. A significant proportion of DNA variants in LS patients are unclassified. Reports on the pathogenicity of the c.1852_1853AA>GC (p.Lys618Ala) variant of the MLH1 gene are conflicting. In this study, we provide new evidence indicating that this variant has no significant implications for LS. Methods: The following approach was used to assess the clinical significance of the p.Lys618Ala variant: frequency in a control population, case-control comparison, co-occurrence of the p.Lys618Ala variant with a pathogenic mutation, co-segregation with the disease and microsatellite instability in tumours from carriers of the variant. We genotyped p.Lys618Ala in 1034 individuals (373 sporadic colorectal cancer [CRC] patients, 250 index subjects from families suspected of having LS [revised Bethesda guidelines] and 411 controls). Three well-characterized LS families that fulfilled the Amsterdam II Criteria and consisted of members with the p.Lys618Ala variant were included to assess co-occurrence and co-segregation. A subset of colorectal tumour DNA samples from 17 patients carrying the p.Lys618Ala variant was screened for microsatellite instability using five mononucleotide markers. Results: Twenty-seven individuals were heterozygous for the p.Lys618Ala variant; nine had sporadic CRC (2.41%), seven were suspected of having hereditary CRC (2.8%) and 11 were controls (2.68%). There were no significant associations in the case-control and case-case studies. The p.Lys618Ala variant was co-existent with pathogenic mutations in two unrelated LS families. In one family, the allele distribution of the pathogenic and unclassified variant was in trans, in the other family the pathogenic variant was detected in the MSH6 gene and only the deleterious variant co-segregated with the disease in both families. Only two positive cases of microsatellite instability (2/17, 11.8%) were detected in tumours from p.Lys618Ala carriers, indicating that this variant does not play a role in functional inactivation of MLH1 in CRC patients. Conclusions: The p.Lys618Ala variant should be considered a neutral variant for LS. These findings have implications for the clinical management of CRC probands and their relatives.