940 resultados para Cold weather clothing.
Resumo:
Increased anthropogenic loading of nitrogen (N) and phosphorus (P) has led to an eutrophication problem in the Baltic Sea, and the spring bloom is a key component in the biological uptake of increased nutrient concentrations. The spring bloom in the Baltic Sea is dominated by both diatoms and dinoflagellates. However, the sedimentation of these groups is different: diatoms tend to sink to the sea floor at the end of the bloom, while dinoflagellates to a large degree are been remineralized in the euphotic zone. Understanding phytoplankton competition and species specific ecological strategies is thus of importance for assessing indirect effects of phytoplankton community composition on eutrophication problems. The main objective of this thesis was to describe some basic physiological and ecological characteristics of the main cold-water diatoms and dinoflagellates in the Baltic Sea. This was achieved by specific studies of: (1) seasonal vertical positioning, (2) dinoflagellate life cycle, (3) mixotrophy, (4) primary production, respiration and growth and (5) diatom silicate uptake, using cultures of common cold-water diatoms: Chaetoceros wighamii, C. gracilis, Pauliella taeniata, Thalassiosira baltica, T. levanderi, Melosira arctica, Diatoma tenuis, Nitzschia frigida, and dinoflagellates: Peridiniella catenata, Woloszynskia halophila and Scrippsiella hangoei. The diatoms had higher primary production capacity and lower respiration rate compared with the dinoflagellates. This difference was reflected in the maximum growth rate, which for the examined diatoms range from 0.6 to 1.2 divisions d-1, compared with 0.2 to 0.3 divisions d-1 for the dinoflagellates. Among diatoms there were species specific differences in light utilization and uptake of silicate, and C. wighamii had the highest carbon assimilation capacity and maximum silicate uptake. The physiological properties of diatoms and dinoflagellates were used in a model of the onset of the spring bloom: for the diatoms the model could predict the initiation of the spring bloom; S. hangoei, on the other hand, could not compete successfully and did not obtain positive growth in the model. The other dinoflagellates did not have higher growth rates or carbon assimilation rates and would thus probably not perform better than S. hangoei in the model. The dinoflagellates do, however, have competitive advantages that were not included in the model: motility and mixotrophy. Previous investigations has revealed that the chain-forming P. catenata performs diurnal vertical migration (DVM), and the results presented here suggest that active positioning in the water column, in addition to DVM, is a key element in this species' life strategy. There was indication of mixotrophy in S. hangoei, as it produced and excreted the enzyme leucine aminopeptidase (LAP). Moreover, there was indirect evidence that W. halophila obtains carbon from other sources than photosynthesis when comparing increase in cell numbers with in situ carbon assimilation rates. The results indicate that mixotrophy is a part of the strategy of vernal dinoflagellates in the Baltic Sea. There were also indications that the seeding of the spring bloom is very important for the dinoflagellates to succeed. In mesocosm experiments dinoflagellates could not compete with diatoms when their initial numbers were low. In conclusion, this thesis has provided new information about the basic physiological and ecological properties of the main cold-water phytoplankton in the Baltic Sea. The main phytoplankton groups, diatoms and dinoflagellates, have different physiological properties, which clearly separate their life strategies. The information presented here could serve as further steps towards better prognostic models of the effects of eutrophication in the Baltic Sea.
Resumo:
Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.
Resumo:
The mid-December 2006 to late January 2007 flood in southern Peninsular Malaysia was the worst flood in a century and was caused by three extreme precipitation episodes. These extreme precipitation events were mainly associated with strong northeasterly winds over the South China Sea. In all cases, the northeasterlies penetrated anomalously far south and followed almost a straight trajectory. The elevated terrain over Sumatra and southern Peninsular Malaysia caused low-level convergence. The strong easterly winds near Java associated with the Rossby wave-type response to Madden-Julian Oscillation (MJO) inhibited the counter-clockwise turning of the northeasterlies and the formation of the Borneo vortex, which, in turn, enhanced the low-level convergence over the region. The abrupt termination of the Indian Ocean Dipole (IOD) in December 2006 played a secondary role as warmer equatorial Indian Ocean helped in the MJO formation.
Resumo:
Numerical weather prediction (NWP) models provide the basis for weather forecasting by simulating the evolution of the atmospheric state. A good forecast requires that the initial state of the atmosphere is known accurately, and that the NWP model is a realistic representation of the atmosphere. Data assimilation methods are used to produce initial conditions for NWP models. The NWP model background field, typically a short-range forecast, is updated with observations in a statistically optimal way. The objective in this thesis has been to develope methods in order to allow data assimilation of Doppler radar radial wind observations. The work has been carried out in the High Resolution Limited Area Model (HIRLAM) 3-dimensional variational data assimilation framework. Observation modelling is a key element in exploiting indirect observations of the model variables. In the radar radial wind observation modelling, the vertical model wind profile is interpolated to the observation location, and the projection of the model wind vector on the radar pulse path is calculated. The vertical broadening of the radar pulse volume, and the bending of the radar pulse path due to atmospheric conditions are taken into account. Radar radial wind observations are modelled within observation errors which consist of instrumental, modelling, and representativeness errors. Systematic and random modelling errors can be minimized by accurate observation modelling. The impact of the random part of the instrumental and representativeness errors can be decreased by calculating spatial averages from the raw observations. Model experiments indicate that the spatial averaging clearly improves the fit of the radial wind observations to the model in terms of observation minus model background (OmB) standard deviation. Monitoring the quality of the observations is an important aspect, especially when a new observation type is introduced into a data assimilation system. Calculating the bias for radial wind observations in a conventional way can result in zero even in case there are systematic differences in the wind speed and/or direction. A bias estimation method designed for this observation type is introduced in the thesis. Doppler radar radial wind observation modelling, together with the bias estimation method, enables the exploitation of the radial wind observations also for NWP model validation. The one-month model experiments performed with the HIRLAM model versions differing only in a surface stress parameterization detail indicate that the use of radar wind observations in NWP model validation is very beneficial.
Resumo:
Data assimilation provides an initial atmospheric state, called the analysis, for Numerical Weather Prediction (NWP). This analysis consists of pressure, temperature, wind, and humidity on a three-dimensional NWP model grid. Data assimilation blends meteorological observations with the NWP model in a statistically optimal way. The objective of this thesis is to describe methodological development carried out in order to allow data assimilation of ground-based measurements of the Global Positioning System (GPS) into the High Resolution Limited Area Model (HIRLAM) NWP system. Geodetic processing produces observations of tropospheric delay. These observations can be processed either for vertical columns at each GPS receiver station, or for the individual propagation paths of the microwave signals. These alternative processing methods result in Zenith Total Delay (ZTD) and Slant Delay (SD) observations, respectively. ZTD and SD observations are of use in the analysis of atmospheric humidity. A method is introduced for estimation of the horizontal error covariance of ZTD observations. The method makes use of observation minus model background (OmB) sequences of ZTD and conventional observations. It is demonstrated that the ZTD observation error covariance is relatively large in station separations shorter than 200 km, but non-zero covariances also appear at considerably larger station separations. The relatively low density of radiosonde observing stations limits the ability of the proposed estimation method to resolve the shortest length-scales of error covariance. SD observations are shown to contain a statistically significant signal on the asymmetry of the atmospheric humidity field. However, the asymmetric component of SD is found to be nearly always smaller than the standard deviation of the SD observation error. SD observation modelling is described in detail, and other issues relating to SD data assimilation are also discussed. These include the determination of error statistics, the tuning of observation quality control and allowing the taking into account of local observation error correlation. The experiments made show that the data assimilation system is able to retrieve the asymmetric information content of hypothetical SD observations at a single receiver station. Moreover, the impact of real SD observations on humidity analysis is comparable to that of other observing systems.
Resumo:
This investigation aimed to quantify metabolic rate when wearing an explosive ordnance disposal (EOD) ensemble (~33kg) during standing and locomotion; and determine whether the Pandolf load carriage equation accurately predicts metabolic rate when wearing an EOD ensemble during standing and locomotion. Ten males completed 8 trials with metabolic rate measured through indirect calorimetry. Walking in EOD at 2.5, 4.0 and 5.5km·h−1 was significantly (p < 0.05) greater than matched trials without the EOD ensemble by 49% (127W), 65% (213W) and 78% (345W), respectively. Mean bias (95% limits of agreement) between predicted and measured metabolism during standing, 2.5, 4 and 5.5km·h−1 were 47W (19 to 75W); −111W (−172 to −49W); −122W (−189 to −54W) and −158W (−245 to −72W), respectively. The Pandolf equation significantly underestimated measured metabolic rate during locomotion. These findings have practical implications for EOD technicians during training and operation and should be considered when developing maximum workload duration models and work-rest schedules.
Resumo:
Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.
Resumo:
This is a study of ultra-cold Fermi gases in different systems. This thesis is focused on exotic superfluid states, for an example on the three component Fermi gas and the FFLO phase in optical lattices. In the two-components case, superfluidity is studied mainly in the case of the spin population imbalanced Fermi gases and the phase diagrams are calculated from the mean-field theory. Different methods to detect different phases in optical lattices are suggested. In the three-component case, we studied also the uniform gas and harmonically trapped system. In this case, the BCS theory is generalized to three-component gases. It is also discussed how to achieve the conditions to get an SU(3)-symmetric Hamiltonian in optical lattices. The thesis is divided in chapters as follows: Chapter 1 is an introduction to the field of cold quantum gases. In chapter 2 optical lattices and their experimental characteristics are discussed. Chapter 3 deals with two-components Fermi gases in optical lattices and the paired states in lattices. In chapter 4 three-component Fermi gases with and without a harmonic trap are explored, and the pairing mechanisms are studied. In this chapter, we also discuss three-component Fermi gases in optical lattices. Chapter 5 devoted to the higher order correlations, and what they can tell about the paired states. Chapter 6 concludes the thesis.
Resumo:
The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.
Resumo:
Numerical models, used for atmospheric research, weather prediction and climate simulation, describe the state of the atmosphere over the heterogeneous surface of the Earth. Several fundamental properties of atmospheric models depend on orography, i.e. on the average elevation of land over a model area. The higher is the models' resolution, the more the details of orography directly influence the simulated atmospheric processes. This sets new requirements for the accuracy of the model formulations with respect to the spatially varying orography. Orography is always averaged, representing the surface elevation within the horizontal resolution of the model. In order to remove the smallest scales and steepest slopes, the continuous spectrum of orography is normally filtered (truncated) even more, typically beyond a few gridlengths of the model. This means, that in the numerical weather prediction (NWP) models, there will always be subgridscale orography effects, which cannot be explicitly resolved by numerical integration of the basic equations, but require parametrization. In the subgrid-scale, different physical processes contribute in different scales. The parametrized processes interact with the resolved-scale processes and with each other. This study contributes to building of a consistent, scale-dependent system of orography-related parametrizations for the High Resolution Limited Area Model (HIRLAM). The system comprises schemes for handling the effects of mesoscale (MSO) and small-scale (SSO) orographic effects on the simulated flow and a scheme of orographic effects on the surface-level radiation fluxes. Representation of orography, scale-dependencies of the simulated processes and interactions between the parametrized and resolved processes are discussed. From the high-resolution digital elevation data, orographic parameters are derived for both momentum and radiation flux parametrizations. Tools for diagnostics and validation are developed and presented. The parametrization schemes applied, developed and validated in this study, are currently being implemented into the reference version of HIRLAM.