987 resultados para Coastal Monitoring. Geodesy. DEM. LiDAR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, high-throughput sequencing (HTS) metabarcoding was applied for the surveillance of plankton communities within the southeastern (SE) Baltic Sea coastal zone. These results were compared with those from routine monitoring survey and morphological analyses. Four of five nonindigenous species found in the samples were identified exclusively by metabarcoding. All of them are considered as invasive in the Baltic Sea with reported impact on the ecosystem and biodiversity. This study indicates that, despite some current limitations, HTS metabarcoding can provide information on the presence of exotic species and advantageously complement conventional approaches, only requiring the same monitoring effort as before. Even in the currently immature status of HTS, this combination of HTS metabarcoding and observational records is recommended in the early detection of marine pests and delivery of the environmental status metrics of nonindigenous species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-of-plane blade deflections shows good agreement between DIC results and aeroelastic simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geological evolution of coastal and marine environments offshore the Cilento Promontory through marine geological mapping is discussed here. The marine geological map n. 502 “Agropoli,” located offshore the Cilento Promontory (southern Italy), is described and put in regional geologic setting. The study area covers water depths ranging between 30 and 200 m isobaths. The geologic map has been constructed in the frame of a research program financed by the National Geological Survey of Italy (CARG Project), finalized to the construction of an up-to-date cartography of the Campania region. Geological and geophysical data on the continental shelf and slope offshore the southern Campania region have been acquired in an area bounded northward by the Gulf of Salerno and southward by the Gulf of Policastro. A high-resolution multibeam bathymetry has permitted the construction of a digital elevation model (DEM). Sidescan sonar profiles have also been collected and interpreted, and their merging with bathymetric data has allowed for the realization of the base for the marine geologic cartography. The calibration of geophysical data has been attempted through sea-bottom samples. The morpho-structures and the seismic sequences overlying the outcrops of acoustic basement reported in the cartographic representation have been studied in detail using single-channel seismics. The interpretation of seismic profiles has been a support for the reconstruction of the stratigraphic and structural setting of the Quaternary continental shelf successions and the outcrops of rocky acoustic basement in correspondence to the Licosa Cape morphostructural high. These areas result from the seaward prolongation of the stratigraphic and structural units, widely cropping out in the surrounding emerged sector of the Cilento Promontory. The cartographic approach is based on the recognition of laterally coeval depositional systems, interpreted in the frame of system tracts of the Late Quaternary depositional sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document is summarizing a major part of the work performed by the FP7-JERICO consortium, including 27 partner institutions, during 4 years (2011-2015). Its objective is to propose a strategy for the European coastal observation and monitoring. To do so we give an overview of the main achievements of the FP7-JERICO project. From this overview, gaps are analysed to draw some recommendations for the future. Overview, gaps and recommendation are addressed at both Hardware and Software levels of the JERICO Research Infrastructure. The main part of the document is built upon this analysis to outcome a general strategy for the future, giving priorities to be targeted and some possible funding mechanisms, but also upon discussions held in dedicated JERICO strategy workshops. This document was initiated in 2014 by the coordination team but considering the fact that an overview of the entire project and its achievement were needed to feed this strategy deliverable it couldn’t ended before the end of FP7-JERICO, April 2015. The preparation of the JERICO-NEXT proposal in summer 2014 to answer an H2020 call for proposals pushed the consortium ahead, fed deep thoughts about this strategy but the intention was to not propose a strategy only bounded by the JERICO-NEXT answer. Authors are conscious that writing JERICO-NEXT is even drawing a bias in the thoughts and they tried to be opened. Nevertheless, comments are always welcome to go farther ahead. Structure of the document The Chapter 3 introduces the need of sustained coastal observatories, from different point of view including a short description of the FP7-JERICO project. In Chapter 4, an analysis of the JERICO coastal observatory Hardware (platforms and sensors) in terms of Status at the end of JERICO, identified gaps and recommendations for further development is provided region by region. The main challenges that remain to be overcome is also summarized. Chapter 5 is dedicated the JERICO infrastructure Software (calibration, operation, quality assessment, data management) and the progress made through JERICO on harmonization of procedures and definition of best practices. Chapter 6 provides elements of a strategy towards sustainable and integrated coastal observations for Europe, drawing a roadmap for cost-effective scientific-based consolidation of the present infrastructure while maximizing the potential arising from JERICO in terms of innovation, wealth-creation, and business development. After reading the chapter 3, for who doesn’t know JERICO, any chapter can be read independently. More details are available in the JERICO final reports and its intermediate reports; all are available on the JERICO web site (www.jerico-FP7.eu) as well as any deliverable. Each chapter will list referring JERICO documents. A small bibliographic list is available at the end of this deliverable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar, da Terra e do Ambiente, Ramo: Ciências do Mar, Especialização em Ecologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016