932 resultados para Coal mine accidents
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
Critical stage in open-pit mining is to determine the optimal extraction sequence of blocks, which has significant impacts on mining profitability. In this paper, a more comprehensive block sequencing optimisation model is developed for the open-pit mines. In the model, material characteristics of blocks, grade control, excavator and block sequencing are investigated and integrated to maximise the short-term benefit of mining. Several case studies are modeled and solved by CPLEX MIP and CP engines. Numerical investigations are presented to illustrate and validate the proposed methodology.
Resumo:
This paper proposes a new multi-resource multi-stage scheduling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints have been considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times of equipment; equipment-assignment-dependent operation times of blocks; distances between each pair of blocks; due windows of blocks; material properties of blocks; swell factors of blocks; and slope requirements of blocks. It is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level. The model also provides an intelligent decision support tool to account for the availability and usage of equipment units for drilling, blasting and excavating stages.
Resumo:
While the exact rate of incidence is unknown (due to the paucity of exposure data), it is acknowledged that safety compromising accidents and incidents occur in the led outdoor activity domain, and that they represent an important issue. Despite this, compared to other safety critical domains, very little is currently known about the key causal factors involved in such accidents and incidents. This report presents the findings derived from a review of the literature, the aim of which was to identify the Human Factors-related issues involved in accidents and incidents occurring in this area. In addition, to demonstrate the utility of systems-based, theoretically underpinned accident analysis methodologies for identifying the systemic and human contribution to accidents and incidents occurring in the led outdoor activity domain, three case-study accidents were analysed using two such approaches. In conclusion, the review identified a range of causal factors cited in the literature; however, it was noted that the majority of the research undertaken to date lacks theoretical underpinning and focuses mainly on instructor or activity leader causal factors, as opposed to the wider system failures involved. The accident analysis presented highlighted the utility of systems-based, theoretically underpinned accident analysis methodologies for analysing and learning from accidents and incidents in the led outdoor activity sector. In closing, the need for further research in the area is articulated, in particular focussing on the development of standardised and universally accepted accident and incident reporting systems and databases, the development of data driven, theoretically underpinned causal factor taxonomies, and the development and application of systems-based accident analysis methodologies.
Resumo:
An updated analysis of the previous analysis available here: http://eprints.qut.edu.au/76230/
Resumo:
A staged crime scene involves deliberate alteration of evidence by the offender to simulate events that did not occur for the purpose of misleading authorities (Geberth, 2006; Turvey, 2000). This study examined 115 staged homicides from the USA to determine common elements; victim and perpetrator characteristics; and specific features of different types of staged scenes. General characteristics include: multiple victims and offenders; a previous relationship be- tween parties involved; and victims discovered in their own home, often by the offender. Staged scenes were separated by type with staged burglaries, suicides, accidents, and car accidents examined in more detail. Each type of scene displays differently with separate indicators and common features. Features of staged burglaries were: no points of entry/exit staged; non-valuables taken; scene ransacking; offender self- injury; and offenders bringing weapons to the scene. Features of staged suicides included: weapon arrangement and simulating self-injury to the victim; rearranging the body; and removing valuables. Examples of elements of staged accidents were arranging the implement/weapon and re- positioning the deceased; while staged car accidents involved: transporting the body to the vehicle and arranging both; mutilation after death; attempts to secure an alibi; and clean up at the primary crime scene. The results suggest few staging behaviors are used, despite the credibility they may have offered the façade. This is the first peer-reviewed, published study to examine the specific features of these scenes, and is the largest sample studied to date.
Resumo:
Draglines are used extensively for overburden stripping in Australian open cut coal mines. This paper outlines the design of a computer control system to implement an automated swing cycle on a production dragline. Subsystems and sensors have been developed to satisfy the constraints imposed by the task, the harsh operating environment and the mine's production requirements.
Resumo:
Draglines are very large machines that are used to remove overburden in open-cut coal mines. This paper outlines the design of a computer control system to implement an automated swing cycle on a production dragline. Subsystems and sensors have been developed to satisfy the constraints imposed by the task, the harsh operating environment and the mine's production requirements.
Resumo:
Dragline Swing to Dump Automation By Peter Corke, CSIRO Manufacturing Technology/CRC for Mining Technology and Equipment (CMTE) Peter Corke presented a case study of a project to automate the dragline swing to dump operation. The project is funded by ACARP, BHP Coal, Pacific Coal and the CMTE and is being carried out on a dragline at Pacific Coal's Meandu mine near Brisbane. Corke began by highlighting that the minerals industry makes extensive use of large, mechanised machines. However, unlike other industries, mining has not adopted automation and most machines are controlled by human operators on board the machine itself. Choosing an automation target The dragline automation was chosen because: ò draglines are one of the biggest capital assets in a mine; ò performance between operators vary significantly, so improved capital utilisation is possible; ò the dragline is often the bottleneck in production; ò a large part of the operation cycle is spent swinging from dig to dump; and ò it is technically feasible. There has been a history of drag line automation projects, none with great success.
Resumo:
This document has arisen from a request from BM Alliance Coal Operations Pty Ltd, to undertake and report on the key findings and statistics, key learning’s and recommendations for fatigue related incidents that have occurred at various BM Alliance coal operation mines in Queensland.
Resumo:
This document has arisen from a request from BM Alliance Coal Operations Pty Ltd, to undertake and report on the key findings and statistics, key learning’s and recommendations for vehicle rollover and loss of traction (skid) incidents that have occurred at various BM Alliance coal operation mines in Queensland.
Resumo:
The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ðFe3þ 1:37; Al0:63ÞP2:00ðSO4Þ3 9H2O. Thermal analysis showed a total mass loss of 73.4% on heating to 1000 C. A mass loss of 30.43% at 641.4 C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm 1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.
Resumo:
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.