923 resultados para Classification errors
Resumo:
Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.
Resumo:
Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.
Resumo:
We study a psychologically based foundation for choice errors. The decision maker applies a preference ranking after forming a 'consideration set' prior to choosing an alternative. Membership of the consideration set is determined both by the alternative specific salience and by the rationality of the agent (his general propensity to consider all alternatives). The model turns out to include a logit formulation as a special case. In general, it has a rich set of implications both for exogenous parameters and for a situation in which alternatives can a¤ect their own salience (salience games). Such implications are relevant to assess the link between 'revealed' preferences and 'true' preferences: for example, less rational agents may paradoxically express their preference through choice more truthfully than more rational agents.
Resumo:
Using survey expectations data and Markov-switching models, this paper evaluates the characteristics and evolution of investors' forecast errors about the yen/dollar exchange rate. Since our model is derived from the uncovered interest rate parity (UIRP) condition and our data cover a period of low interest rates, this study is also related to the forward premium puzzle and the currency carry trade strategy. We obtain the following results. First, with the same forecast horizon, exchange rate forecasts are homogeneous among different industry types, but within the same industry, exchange rate forecasts differ if the forecast time horizon is different. In particular, investors tend to undervalue the future exchange rate for long term forecast horizons; however, in the short run they tend to overvalue the future exchange rate. Second, while forecast errors are found to be partly driven by interest rate spreads, evidence against the UIRP is provided regardless of the forecasting time horizon; the forward premium puzzle becomes more significant in shorter term forecasting errors. Consistent with this finding, our coefficients on interest rate spreads provide indirect evidence of the yen carry trade over only a short term forecast horizon. Furthermore, the carry trade seems to be active when there is a clear indication that the interest rate will be low in the future.
Resumo:
This paper provides a general treatment of the implications for welfare of legal uncertainty. We distinguish legal uncertainty from decision errors: though the former can be influenced by the latter, the latter are neither necessary nor sufficient for the existence of legal uncertainty. We show that an increase in decision errors will always reduce welfare. However, for any given level of decision errors, information structures involving more legal uncertainty can improve welfare. This holds always, even when there is complete legal uncertainty, when sanctions on socially harmful actions are set at their optimal level. This transforms radically one’s perception about the “costs” of legal uncertainty. We also provide general proofs for two results, previously established under restrictive assumptions. The first is that Effects-Based enforcement procedures may welfare dominate Per Se (or object-based) procedures and will always do so when sanctions are optimally set. The second is that optimal sanctions may well be higher under enforcement procedures involving more legal uncertainty.
Resumo:
BACKGROUND: Doctors, especially doctors-in-training such as residents, make errors. They have to face the consequences even though today's approach to errors emphasizes systemic factors. Doctors' individual characteristics play a role in how medical errors are experienced and dealt with. The role of gender has previously been examined in a few quantitative studies that have yielded conflicting results. In the present study, we sought to qualitatively explore the experience of female residents with respect to medical errors. In particular, we explored the coping mechanisms displayed after an error. This study took place in the internal medicine department of a Swiss university hospital. METHODS: Within a phenomenological framework, semi-structured interviews were conducted with eight female residents in general internal medicine. All interviews were audiotaped, fully transcribed, and thereafter analyzed. RESULTS: Seven main themes emerged from the interviews: (1) A perception that there is an insufficient culture of safety and error; (2) The perceived main causes of errors, which included fatigue, work overload, inadequate level of competences in relation to assigned tasks, and dysfunctional communication; (3) Negative feelings in response to errors, which included different forms of psychological distress; (4) Variable attitudes of the hierarchy toward residents involved in an error; (5) Talking about the error, as the core coping mechanism; (6) Defensive and constructive attitudes toward one's own errors; and (7) Gender-specific experiences in relation to errors. Such experiences consisted in (a) perceptions that male residents were more confident and therefore less affected by errors than their female counterparts and (b) perceptions that sexist attitudes among male supervisors can occur and worsen an already painful experience. CONCLUSIONS: This study offers an in-depth account of how female residents specifically experience and cope with medical errors. Our interviews with female residents convey the sense that gender possibly influences the experience with errors, including the kind of coping mechanisms displayed. However, we acknowledge that the lack of a direct comparison between female and male participants represents a limitation while aiming to explore the role of gender.
Resumo:
Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.
Resumo:
The objective of this work was to characterize, and compare different morphological types of hemocytes of Rhodnius prolixus, Rhodnius, Rhodnius neglectus, Triatoma infestans, Panstrongylus megistus, and Dipetalogaster maximus. This information provides the basis for studying the cellular immune systems of these insects. Seven morphological hemocyte types wereidentified by phase-contrast microscopy: prohemocytes, plasmatocytes, granular cells, cytocytes, oenocytoids, adipohemocytes and giant cells. All seven types of hemocytes are not present in every species. For example, adipohemocytes and oenocytoids were not observed in P. megistus and P. infestans, and giant cells were rarely found in any of the species studied. The hemocytes of rhodnius and Dipetalogaster are more similar to each other than those from Triatoma and Panstrongylus which in turn closely resemble each other. Emphasis is placed on methodological problems arising in this work wicah are discussed in detail.