991 resultados para Chapter 11 Bankruptcy
Resumo:
Developments in digital detector technologies have been taking place and new digital technologies are available for clinical practice. This chapter is intended to give a technical state-of-the-art overview about computed radiography (CR) and digital radiography (DR) detectors. CR systems use storage-phosphor image plates with a separate image readout process and DR technology converts X-rays into electrical charges by means of a readout process using TFT arrays. Digital detectors offer several advantages when compared to analogue detectors. The knowledge about digital detector technology for use in plain radiograph examinations is thus a fundamental topic to be acquired by radiology professionals and students. In this chapter an overview of digital radiography systems (both CR and DR) currently available for clinical practice is provided.
Resumo:
The characterization of physical properties of digital imaging systems requires the determination and measurement of detectors’ physical performance. Those measures such as modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) provide objective evaluations of digital detectors’ performance. To provide an MTF, NPS, and DQE calculation from raw-data images it is necessary to implement a method that is undertaken by two major steps: (1) image acquisition and (2) quantitative measure determination method. In this chapter a comprehensive description about a method to provide the measure of performance of digital radiography detectors is provided.
Resumo:
This chapter addresses technical issues concerning digital technologies. Radiological equipment and technique are briefly introduced together with a discussion about requirements and advantages of digital technologies. Digital technologies offer several advantages when compared to conventional analogical systems, or screen–film (SF) systems. While in clinical practice the practitioners should be aware of technical factors such as image acquisition, management of patient dose, and diagnostic image quality. Thus, digital technologies require an up-to-date scientific knowledge concerning their use in projection radiography. In this chapter, technical considerations concerning digital technologies are provided.
Resumo:
The assessment of patient dose has gained increased attention, still being an issue of concern that arises from the use of digital systems. The development of digital technology offers the possibility for a reduction of radiation dose around 50% without loss in image quality when compared to a conventional screen–film system. Digital systems give an equivalent or superior diagnostic performance and also several other advantages, but the risk of overexposure with no adverse effect on image quality could be present. This chapter refers to the management of patient dose and provides an explanation of dose-related concepts. In this chapter, exposure influence in dose and image representation and the effects of radiation exposure are also discussed.
Resumo:
This chapter provides a theoretical background about image quality in diagnostic radiology. Digital image representation and also image quality evaluation methods are here discussed. An overview of methods for quality evaluation of diagnostic imaging procedures is provided. Digital image representation and primary physical image quality parameters are also discussed, including objective image quality measurements and observer performance methods.
Resumo:
Digital radiography detectors—based on different technological solutions—are currently available for clinical applications and widespread in clinical practice. Computed radiography (CR) and digital radiology systems have been available for clinical applications and the trend over the last few years has become digital. Radiology departments have been changing from traditional screen–film technology to digital technology. This chapter is intended to give the reader a practical understanding about the key aspects concerning digital systems, related to the performance of different technologies, image quality, and dose and patient safety/protection. The discussion around an optimization framework for digital systems is provided.
Resumo:
Once in a digital form, a radiographic image may be processed in several ways in order to turn the visualization an act of improved diagnostic value. Practitioners should be aware that, depending on each clinical context, digital image processing techniques are available to help to unveil visual information that is, in fact, carried by the bare digital radiograph and may be otherwise neglected. The range of visual enhancement procedures includes simple techniques that deal with the usual brightness and contrast manipulation up to much more elaborate multi-scale processing that provides customized control over the emphasis given to the relevant finer anatomical details. This chapter is intended to give the reader a practical understanding of image enhancement techniques that might be helpful to improve the visual quality of the digital radiographs and thus to contribute to a more reliable and assertive reporting.
Resumo:
Plain radiography still accounts for the vast majority of imaging studies that are performed at multiple clinical instances. Digital detectors are now prominent in many imaging facilities and they are the main driving force towards filmless environments. There has been a working paradigm shift due to the functional separation of acquisition, visualization, and storage with deep impact in the imaging workflows. Moreover with direct digital detectors images are made available almost immediately. Digital radiology is now completely integrated in Picture Archiving and Communication System (PACS) environments governed by the Digital Imaging and Communications in Medicine (DICOM) standard. In this chapter a brief overview of PACS architectures and components is presented together with a necessarily brief account of the DICOM standard. Special focus is given to the DICOM digital radiology objects and how specific attributes may now be used to improve and increase the metadata repository associated with image data. Regular scrutiny of the metadata repository may serve as a valuable tool for improved, cost-effective, and multidimensional quality control procedures.
Resumo:
Resvista Fiscal Junho 2006
Resumo:
The present work concerns a new synthesis approach to prepare niobium based SAPO materials with AEL structure and the characterization ofNb species incorporated within the inorganic matrixes. The SAPO-11 materials were synthesized with or without the help of a small amine, methylamine (MA) as co-template, while Nb was added directly during the preparation of the initial gel. Structural, textural and acidic properties of the different supports were evaluated by XRD, TPR, UV-Vis spectroscopy, pyridine adsorption followed by IR spectroscopy and thermal analyses. Pure and well crystalline Nb based SAPO-11 materials were obtained, either with or without MA, using in the initial gel a low Si content of about 0.6. Increasing the Si content of the gel up to 0.9 led to an important decrease of the samples crystallinity. Niobium was found to incorporate the AEL pores support as small Nb2O5 oxide particles and also as extra framework cationic species (Nb5+), compensating the negative charges from the matrix and generating new Lewis acid sites. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in sophisticated tools very helpful under this context. Some simulation tools have already been developed, some of them very interesting. However, at the present state it is important to go a step forward in Electricity Markets simulators as this is crucial for facing changes in Power Systems. This paper explains the context and needs of electricity market simulation, describing the most important characteristics of available simulators. We present our work concerning MASCEM simulator, presenting its features as well as the improvements being made to accomplish the change and challenging reality of Electricity Markets.
Resumo:
O objetivo do estudo foi conhecer as representações, estímulos e constrangimentos de árbitros portugueses de futebol de 11. Através da realização de entrevistas semiestruturadas foram inquiridos 19 árbitros. Os dados foram analisados através da técnica de análise de conteúdo com o software Nvivo 10. A análise dos resultados permitiu concluir que a representação do que é ser árbitro se consubstancia, sobretudo, pelo paixão e prazer pela atividade, sendo também atribuída significativa importância aos valores como a idoneidade, a isenção, responsabilidade, respeito e dignidade. Referiram que um bom árbitro apresenta não só uma boa condição física, mas também uma estrutura psicológica e um “saber estar” que potenciam o seu desempenho. A generalidade dos entrevistados sentia-se estimulada para o exercício desta atividade, referindo o prazer e a possibilidade de progressão na carreira como os principais estímulos. Aqueles que não se sentiam estimulados consideraram que eram mal remunerados e pouco acompanhados e acarinhados pelos responsáveis da arbitragem. Os principais constrangimentos apontados foram os comportamentos agressivos de adeptos, dirigentes e público, as dificuldades de conciliação com a vida familiar e profissional, as dificuldades de progressão na carreira e a injustiça na avaliação do desempenho
Resumo:
Dissertação de Mestrado, Relações Internacionais, 22 de Novembro de 2013, Universidade dos Açores.
Resumo:
Copyright © 2013 Springer Netherlands.