851 resultados para Change Impact


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expansion of agriculture in the Near East during the middle Holocene significantly altered the physical landscape. However, the relationship between the scale of agriculture and the magnitude and timing of the environmental impacts is not well known. The Gordion Regional Survey provides a novel dataset to compare settlement density during archaeological periods to rates of environmental disruption. Sediment samples from alluvial cores directly date the environmental disruption, which can be matched to period-specific settlement intensities in the watershed as constructed from archaeological survey ceramics. Degradation rates rose sharply within a millennium of the earliest Chalcolithic occupation. Early Bronze Age (EBA) land use induced the greatest rates of environmental degradation, although settlement density was relatively low on the landscape. The degradation rate subsequently decreased to one-third its early peak by the Iron Age, even as settlement intensity climbed. This trajectory reveals how complex interaction effects can amplify or subdue the responses of the landscape-land use system. Prior to settlement, landscape soil reservoirs were highly vulnerable, easily tipped by early agricultural expansion. Subsequent reduced rates of erosion are tied both to changes in sociopolitical organization and to depletion of the vulnerable soil supply.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since it is very toxic and accumulates in organisms, particularly in fish, mercury is a very important pollutant and one of the most studies. And this concern over the toxicity and human health risks of mercury has prompted efforts to regulate anthropogenic emissions. As mercury pollution problem is getting increasingly serious, we are curious about how serious this problem will be in the future. What is more, how the climate change in the future will affect the mercury concentration in the atmosphere. So we investigate the impact of climate change on mercury concentration in the atmosphere. We focus on the comparison between the mercury data for year 2000 and for year 2050. The GEOS-Chem model shows that the mercury concentrations for all tracers (1 to 3), elemental mercury (Hg(0)), divalent mercury (Hg(II)) and primary particulate mercury (Hg(P)) have differences between 2000 and 2050 in most regions over the world. From the model results, we can see the climate change from 2000 to 2050 would decrease Hg(0) surface concentration in most of the world. The driving factors of Hg(0) surface concentration changes are natural emissions(ocean and vegetation) and the transformation reactions between Hg(0) and Hg(II). The climate change from 2000 to 2050 would increase Hg(II) surface concentration in most of mid-latitude continental parts of the world while decreasing Hg(II) surface concentration in most of high-latitude part of the world. The driving factors of Hg(II) surface concentration changes is deposition amount change (majorly wet deposition) from 2000 to 2050 and the transformation reactions between Hg(0) and Hg(II). Climate change would increase Hg(P) concentration in most of mid-latitude area of the world and meanwhile decrease Hg(P) concentration in most of high-latitude regions of the world. For the Hg(P) concentration changes, the major driving factor is the deposition amount change (mainly wet deposition) from 2000 to 2050.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Nursing in 'live islands' and routine high dose intravenous immunoglobulins after allogeneic hematopoietic stem cell transplantation were abandoned by many teams in view of limited evidence and high costs. METHODS: This retrospective single-center study examines the impact of change from nursing in 'live islands' to care in single rooms (SR) and from high dose to targeted intravenous immunoglobulins (IVIG) on mortality and infection rate of adult patients receiving an allogeneic stem cell or bone marrow transplantation in two steps and three time cohorts (1993-1997, 1997-2000, 2000-2003). RESULTS: Two hundred forty-eight allogeneic hematopoetic stem cell transplantations were performed in 227 patients. Patient characteristics were comparable in the three cohorts for gender, median age, underlying disease, and disease stage, prophylaxis for graft versus host disease (GvHD) and cytomegalovirus constellation. The incidence of infections (78.4%) and infection rates remained stable (rates/1000 days of neutropenia for sepsis 17.61, for pneumonia 6.76). Cumulative incidence of GvHD and transplant-related mortality did not change over time. CONCLUSIONS: Change from nursing in 'live islands' to SR and reduction of high dose to targeted IVIG did not result in increased infection rates or mortality despite an increase in patient age. These results support the current practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios were derived from ten regional climate models from the ENSEMBLES project. Their respective temperature and precipitation changes between the scenario period (2074–2095) and the control period (1984–2005) were used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) was assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland were analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as changes in evaporation or soil moisture are concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchments with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in this study, though, is the climate scenario and it is highly recommended to apply an ensemble of climate scenarios in the impact studies. The results presented here are valid for the climatic region they were tested for, i.e., a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: As scholars who prepare future school leaders to be innovative instructional leaders for their learning communities, we are on the verge of a curriculum design revolution. The application of brain research findings promotes educational reform efforts to systemically change the way in which children experience school. However, most educators, school leaders, board members, and policy makers are ill prepared to reconsider the implications for assessment, pedagogy, school climate, daily schedules, and use of technology. This qualitative study asked future school leaders to reconsider how school leadership preparedness programs prepared them to become instructional leaders for the 21st century. The findings from this study will enhance the field of school leadership, challenging the current emphasis placed on standardized testing, traditional school calendars, assessments, monocultural instructional methods, and meeting the needs of diverse learning communities. [See PDF for complete abstract]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel-oping countries. It is contributing significantly to food security and food safety and has sustained livelihood of the urban and peri-urban low income dwellers in developing countries for many years. Population increase due to rural-urban migration and natural, coupled with formal as well as infor-mal urbanization are competing with urban farming for available space and scarce water resources. A multitemporal multisensoral urban change analysis over the period of 25 years (1982-2007) was performed in order to measure and visualize the urban expansion along the Kizinga and Mzinga valley in the South of Dar es Salaam. Airphotos and VHR satellite data were analyzed by using a combination of a composition of anisotropic textural measures and spectral information. The study revealed that unplanned built-up area is expanding continuously and vegetation covers and agricultural lands decline at a fast rate. The validation showed that the overall classification accuracy varied depending on the database. The extracted built-up areas were used for visual in-terpretation mapping purposes and served as information source for another research project. The maps visualize an urban congestion and expansion of nearly 18% of the total analyzed area that had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob-served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas underwent fast changes where land prices still tend to go up and an influx of people both from rural and urban areas continuously increase density with the consequence of increasing multiple land use interests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper assesses the impact of climate change on China's agricultural production at a cross-provincial level using the Ricardian approach, incorporating a multilevel model with farm-level group data. The farm-level group data includes 13379 farm households, across 316 villages, distributed in 31 provinces. The empirical results show that, firstly, the marginal effects and elasticities of net crop revenue per hectare with respect to climate factors indicated that the annual impact of temperature on net crop revenue per hectare was positive, and the effect of increased precipitation was negative when looking at the national totals; secondly, the total impact of simulated climate change scenarios on net crop revenues per hectare at a Chinese national total level, was an increase of between 79 USD per hectare and 207 USD per hectare for the 2050s, and an increase from 140 USD per hectare to 355 USD per hectare for the 2080s. As a result, climate change may create a potential advantage for the development of Chinese agriculture, rather than a risk, especially for agriculture in the provinces of the Northeast, Northwest and North regions. However, the increased precipitation can lead to a loss of net crop revenue per hectare, especially for the provinces of the Southwest, Northwest, North and Northeast regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solar variability represents a source of uncertainty in the future forcings used in climate model simulations. Current knowledge indicates that a descent of solar activity into an extended minimum state is a possible scenario. With aid of experiments from a state-of-the-art Earth system model, we investigate the impact of a future solar minimum on Northern Hemisphere climate change projections. This scenario is constructed from recent 11 year solar-cycle minima of the solar spectral irradiance, and is therefore more conservative than the 'grand' minima employed in some previous modeling studies. Despite the small reduction in total solar irradiance (0.36 W m^-2), relatively large responses emerge in the winter Northern Hemisphere, with a reduction in regional-scale projected warming by up to 40%. To identify the origin of the enhanced regional signals, we assess the role of the different mechanisms by performing additional experiments forced only by irradiance changes at different wavelengths of the solar spectrum. We find that a reduction in visible irradiance drives changes in the stationary wave pattern of the North Pacific and sea-ice cover. A decrease in UV irradiance leads to smaller surface signals, although its regional effects are not negligible. These results point to a distinct but additive role of UV and visible irradiance in the Earth's climate, and stress the need to account for solar forcing as a source of uncertainty in regional scale projections.