790 resultados para Capital assets pricing model
Resumo:
When a company desires to invest in a project, it must obtain resources needed to make the investment. The alternatives are using firm s internal resources or obtain external resources through contracts of debt and issuance of shares. Decisions involving the composition of internal resources, debt and shares in the total resources used to finance the activities of a company related to the choice of its capital structure. Although there are studies in the area of finance on the debt determinants of firms, the issue of capital structure is still controversial. This work sought to identify the predominant factors that determine the capital structure of Brazilian share capital, non-financial firms. This work was used a quantitative approach, with application of the statistical technique of multiple linear regression on data in panel. Estimates were made by the method of ordinary least squares with model of fixed effects. About 116 companies were selected to participate in this research. The period considered is from 2003 to 2007. The variables and hypotheses tested in this study were built based on theories of capital structure and in empirical researches. Results indicate that the variables, such as risk, size, and composition of assets and firms growth influence their indebtedness. The profitability variable was not relevant to the composition of indebtedness of the companies analyzed. However, analyzing only the long-term debt, comes to the conclusion that the relevant variables are the size of firms and, especially, the composition of its assets (tangibility).This sense, the smaller the size of the undertaking or the greater the representation of fixed assets in total assets, the greater its propensity to long-term debt. Furthermore, this research could not identify a predominant theory to explain the capital structure of Brazilian
Resumo:
This study aims to investigate the influence of the asset class and the breakdown of tangibility as determinant factors of the capital structure of companies listed on the BM & FBOVESPA in the period of 2008-2012. Two current assets classes were composed and once they were grouped by liquidity, they were also analyzed by the financial institutions for credit granting: current resources (Cash, Bank and Financial Applications) and operations with duplicates (Stocks and Receivables). The breakdown of the tangible assets was made based on its main components provided as warrantees for loans like Machinery & Equipment and Land & Buildings. For an analysis extension, three metrics for leverage (accounting, financial and market) were applied and the sample was divided into economic sectors, adopted by BM&FBOVESPA. The data model in dynamic panel estimated by a systemic GMM of two levels was used in this study due its strength to problems of endogenous relationship as well as the omitted variables bias. The found results suggest that current resources are determinants of the capital structure possibly because they re characterized as proxies for financial solvency, being its relationship with debt positive. The sectorial analysis confirmed the results for current resources. The tangibility of assets has inverse proportional relationship with the leverage. As it is disintegrated in its main components, the significant and negative influence of machinery & equipment was more marked in the Industrial Goods sector. This result shows that, on average, the most specific assets from operating activities of a company compete for a less use of third party resources. As complementary results, it was observed that the leverage has persistence, which is linked with the static trade-off theory. Specifically for financial leverage, it was observed that the persistence is relevant when it is controlled for the lagged current assets classes variables. The proxy variable for growth opportunities, measured by the Market -to -Book, has the sign of its contradictory coefficient. The company size has a positive relationship with debt, in favor of static trade-off theory. Profitability is the most consistent variable in all the performed estimations, showing strong negative and significant relationship with leverage, as the pecking order theory predicts
Resumo:
Entrevista com Fred Luthans,1 coauthor of Psychological Capital: Developing the Human Competitive Edge
Resumo:
Ph.D. in the Faculty of Business Administration
Resumo:
En la sociedad actual del conocimiento las universidades tienen la responsabilidad de generar conocimiento e innovaciones para ofrecer soluciones a problemas de comunidades de interés. Para lograrlo las universidades deben enfocarse en su activo más importante, su capital intelectual. Hasta ahora las investigaciones relacionadas con el capital intelectual y la innovación en las universidades, son limitadas a pesar de ser un elemento estratégico para la dirección de estas organizaciones, ya que estos aspectos le representan valor en el tiempo, por tanto esta investigación busca establecer cuál es la relación que existe entre el capital intelectual y la innovación en la Universidad CES. El objetivo de esta investigación era identificar el grado de relación entre capital intelectual e innovación en la Universidad CES. La metodología del estudio, es un estudio cuantitativo, de tipo descriptivo explicativo, con un diseño transversal, que permitió establecer el efecto del capital intelectual sobre la innovación de la Universidad CES. La población del fueron los directivos, líderes de los grupos de investigación y los coordinadores de investigación de la Universidad CES. Según los resultados obtenidos, este estudio determinó que el capital intelectual no tiene una relación estadísticamente significativa con la innovación personal de la Universidad CES y se determinó también que las tres dimensiones del capital intelectual tienen una relación estadísticamente significativa con los resultados de la innovación en la Universidad CES. El principal aporte de este estudio fue ofrecer evidencias sobre el capital intelectual como una de las principales fuentes de innovación para la Universidad.
Resumo:
The high degree of variability and inconsistency in cash flow study usage by property professionals demands improvement in knowledge and processes. Until recently limited research was being undertaken on the use of cash flow studies in property valuations but the growing acceptance of this approach for major investment valuations has resulted in renewed interest in this topic. Studies on valuation variations identify data accuracy, model consistency and bias as major concerns. In cash flow studies there are practical problems with the input data and the consistency of the models. This study will refer to the recent literature and identify the major factors in model inconsistency and data selection. A detailed case study will be used to examine the effects of changes in structure and inputs. The key variable inputs will be identified and proposals developed to improve the selection process for these key variables. The variables will be selected with the aid of sensitivity studies and alternative ways of quantifying the key variables explained. The paper recommends, with reservations, the use of probability profiles of the variables and the incorporation of this data in simulation exercises. The use of Monte Carlo simulation is demonstrated and the factors influencing the structure of the probability distributions of the key variables are outline. This study relates to ongoing research into functional performance of commercial property within an Australian Cooperative Research Centre.
Resumo:
Abstract Maintaining the health of a construction project can help to achieve the desired outcomes of the project. An analogy is drawn to the medical process of a human health check where it is possible to broadly diagnose health in terms of a number of key areas such as blood pressure or cholesterol level. Similarly it appears possible to diagnose the current health of a construction project in terms of a number of Critical Success Factors (CSFs) and key performance indicators (KPIs). The medical analogy continues into the detailed investigation phase where a number of contributing factors are evaluated to identify possible causes of ill health and through the identification of potential remedies to return the project to the desired level of health. This paper presents the development of a model that diagnoses the immediate health of a construction project, investigates the factors which appear to be causing the ill health and proposes a remedy to return the project to good health. The proposed model uses the well-established continuous improvement management model (Deming, 1986) to adapt the process of human physical health checking to construction project health.
Resumo:
An earlier CRC-CI project on ‘automatic estimating’ (AE) has shown the key benefit of model-based design methodologies in building design and construction to be the provision of timely quantitative cost evaluations. Furthermore, using AE during design improves design options, and results in improved design turn-around times, better design quality and/or lower costs. However, AEs for civil engineering structures do not exist; and research partners in the CRC-CI expressed interest in exploring the development of such a process. This document reports on these investigations. The central objective of the study was to evaluate the benefits and costs of developing an AE for concrete civil engineering works. By studying existing documents and through interviews with design engineers, contractors and estimators, we have established that current civil engineering practices (mainly roads/bridges) do not use model-based planning/design. Drawings are executed in 2D and only completed at the end of lengthy planning/design project management lifecycle stages. We have also determined that estimating plays two important, but different roles. The first is part of project management (which we have called macro level estimating). Estimating in this domain sets project budgets, controls quality delivery and contains costs. The second role is estimating during planning/design (micro level estimating). The difference between the two roles is that the former is performed at the end of various lifecycle stages, whereas the latter is performed at any suitable time during planning/design.
Resumo:
The determination of the most appropriate procurement method for capital works projects is a challenging task for the Department of Housing and Works (DHW) and other Western Australian State Government Agencies because of the array of assessment criteria that are considered and the procurement methods that are available. A number of different procurement systems can be used to deliver capital works projects such a traditional, design and construct and management. Sub-classifications of these systems have proliferated and continue to emerge in response to market demands. The selection of an inappropriate procurement method may lead to undesirable project outcomes. To facilitate DHW in selecting an appropriate procurement method for its capital works projects, a six step procurement method selection process is presented. The characteristics of the most common forms of procurement method used in Australia are presented. Case studies where procurement methods have been used for specific types of capital works in Western Australia are offered to provide a reference point and learning opportunity for procurement method selection.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
This report documents work carried out in order to develop and prove a model for predicting the lifetime of painted metal components, with a particular emphasis on Colorbond® due to its prominent use throughout Australia. This work continues on from previous developments reported in 2002-059-B No. 12 [1]. Extensions of work included the following research: (1) Experimental proving of the leaching of chromate inhibitors from Colorbond® materials. (2) Updated models for the accumulation of salts and the time of wetness for gutters, based upon field observations. (3) Electrochemical Impedance Spectroscopy investigations aimed at correlating the corrosion rates of weathered Colorbond® with those predicted by modeling.
Resumo:
Designing and estimating civil concrete structures is a complex process which to many practitioners is tied to manual or semi-manual processes of 2D design and cannot be further improved by automated, interacting design-estimating processes. This paper presents a feasibility study for the development an automated estimator for concrete bridge design. The study offers a value proposition: an efficient automated model-based estimator can add value to the whole bridge design-estimating process, i.e., reducing estimation errors, shortening the duration of success estimates, and increasing the benefit of doing cost estimation when compared with the current practice. This is then followed by a description of what is in an efficient automated model-based estimator and how it should be used. Finally the process of model-based estimating is compared with the current practice to highlight the values embedded in the automated processes.
Resumo:
This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application