926 resultados para Capacitor voltage equalization
Resumo:
This paper proposes a methodology to incorporate voltage/reactive representation to Short Term Generation Scheduling (STGS) models, which is based on active/reactive decoupling characteristics of power systems. In such approach STGS is decoupled in both Active (AGS) and Reactive (RGS) Generation Scheduling models. AGS model establishes an initial active generation scheduling through a traditional dispatch model. The scheduling proposed by AGS model is evaluated from the voltage/reactive points of view, through the proposed RGS model. RGS is formulated as a sequence of T nonlinear OPF problems, solved separately but taking into account load tracking between consecutive time intervals. This approach considerably reduces computational effort to perform the reactive analysis of the RGS problem as a whole. When necessary, RGS model is capable to propose active generation redispatches, such that critical reactive problems (in which all reactive variables have been insufficient to control the reactive problems) can be overcome. The formulation and solution methodology proposed are evaluated in the IEEE30 system in two case studies. These studies show that the methodology is robust enough to incorporate reactive aspects to STGS problem.
Resumo:
We report the successful deposition of CaBi2Nb2O9 (CBN) thin films on platinum coated silicon substrates by polymeric precursor method. The CBN thin films exhibited good structural, dielectric and CBN/Pt interface characteristics. The leakage current of the capacitor structure was around 0.15 A cm(-2) at an applied electric field of 30 kV cm(-1). The capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 90 and 0.053, respectively. The remanent polarization and the drive voltage values were 4.2 C cm(-2) and 1.7 V at an applied voltage of 10 V. No significant fatigue was observed at least up to 10(8) switching cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.
Resumo:
Highly (100) oriented Pb0.8Ba0.2TiO3/LaNiO3 structures were grown on LaAlO3(100) substrates by using a wet, soft chemical method and crystallized by the microwave oven technique. The Au/PBT/LaNiO3/LaAlO3 capacitor shows a hysteresis loop with remnant polarization, P-r, of 15 muC/cm(2), and coercive field, E-c, of 47 kV/cm at an applied voltage of 3 V, along with a dielectric constant over 1800. Atomic force microscopy showed that Pb0.8Ba0.2TiO3 is composed of large grains about 300 nm. The experimental results demonstrated that the microwave preparation is rapid, clean, and energy efficient. Therefore, we demonstrated that the combination of the soft chemical method with the microwave process is a promising technique to grow highly oriented thin films with excellent dielectric and ferroelectric properties, which can be used in various integrated device applications. (C) 2004 American Institute of Physics.
Resumo:
Strong interest in developing technology for visual information. stimulates research for thin film electroluminescent devices. Here, for the first time, we report that thulium- and terbium-doped zinc-oxide films are suitable for electroluminescence applications. Two different devices were assembled as lTO/LiF/ZnO:RE/LiF/Al or ITO/SiO2/ZnO:RE/SiO2/Al, where ZnO:RE is a film of zinc oxide containing 10 at% of Tb3+ or Tm3+. Electroluminescence spectra show that besides a broad emission band with maximum around 650 nm assigned to ZnO, also emission lines from Tb3+ at 484 nm (D-5(4) -> F-7(6)), 543 nm (D-5(4) -> F-7(6)), and 589 nm (D-5(4) -> F-7(4)), or from Tm3+ at 478 nm ((1)G(4) -> H-3(6)), and 511 mn (D-1(2) -> H-3(5)) were detected. Intensity of emission as function of applied voltage and current-voltage characteristic are shown and discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which. justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results.
Resumo:
A linearly tunable low-voltage CMOS transconductor featuring a new adaptative-bias mechanism that considerably improves the stability of the processed-signal common,mode voltage over the tuning range, critical for very-low voltage applications, is introduced. It embeds a feedback loop that holds input devices on triode region while boosting the output resistance. Analysis of the integrator frequency response gives an insight into the location of secondary poles and zeros as function of design parameters. A third-order low-pass Cauer filter employing the proposed transconductor was designed and integrated on a 0.8-mum n-well CMOS standard process. For a 1.8-V supply, filter characterization revealed f(p) = 0.93 MHz, f(s) = 1.82 MHz, A(min) = 44.08, dB, and A(max) = 0.64 dB at nominal tuning. Mined by a de voltage V-TUNE, the filter bandwidth was linearly adjusted at a rate of 11.48 kHz/mV over nearly one frequency decade. A maximum 13-mV deviation on the common-mode voltage at the filter output was measured over the interval 25 mV less than or equal to V-TUNE less than or equal to 200 mV. For V-out = 300 mV(pp) and V-TUNE = 100 mV, THD was -55.4 dB. Noise spectral density was 0.84 muV/Hz(1/2) @1 kHz and S/N = 41 dB @ V-out = 300 mV(pp) and 1-MHz bandwidth. Idle power consumption was 1.73 mW @V-TUNE = 100 mV. A tradeoff between dynamic range, bandwidth, power consumption, and chip area has then been achieved.
Resumo:
This study describes a technical analysis of a four-phase line as a transmission system alternative. An analysis in the frequency and the time domains is performed to evaluate the electrical characteristics and the transient response of a generic four-phase system compared with those of a conventional three-phase transmission system. The technical features of this non-conventional system are discussed and reviewed based on the current literature. Thus, a new analysis of the four-phase system is presented that emphasises several technical characteristics that have not been discussed in previous studies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a comparison of reactive power support in distribution networks provided by switched Capacitor Banks (CBs) and Distributed Generators (DGs). Regarding switched CBs, a Tabu Search metaheuristic algorithm is developed to determine their optimal operation with the objective of reducing the power losses in the lines on the system, while meeting network constraints. on the other hand, the optimal operation of DGs is analyzed through an evolutionary Multi-Objective (MO) programming approach. The objectives of such approach are the minimization of power losses and operation cost of the DGs. The comparison of the reactive power support provided by switched CBs and DGs is carried out using a modified IEEE 34 bus distribution test system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present review describes mainly the history of SnO2-based voltage-dependent resistors, discusses the main characteristics of these polycrystalline semiconductor systems and includes a direct comparison with traditional ZnO-based voltage-dependent resistor systems to establish the differences and similarities, giving details of the basic physical principles involved with the non-ohmic properties in both polycrystalline systems. As an overview, the text also undertakes the main difficulties involved in processing SnO2- and ZnO-based non-ohmic systems, with an evaluation of the contribution of the dopants to the electronic properties and to the final microstructure and consequently to the system's non-ohmic behavior. However, since there are at least two review texts regarding ZnO-based systems [Levinson, L. M., and Philipp, H. R. Ceramic Bulletin 1985;64:639; Clarke, D. R. Journal of American Ceramic Society 1999;82:485], the main focus of the present text is dedicated to the SnO2-based varistor systems, although the basic physical principles described in the text are universally useful in the context of dense polycrystalline devices. However, the readers must be careful of how the microstructure heterogeneity and grain-boundary chemistry are capable to interfere in the global electrical response for particular systems. New perspectives for applications, commercialization and degradation studies involving SnO2-based polycrystalline non-ohmic systems are also outlined, including recent technological developments. Finally, at the end of this review a brief section is particularly dedicated to the presentation and discussions about others emerging non-ohmic polycrystalline ceramic devices (particularly based on perovskite ceramics) which must be deeply studied in the years to come, specially because some of these systems present combined high dielectric and non-ohmic properties. From both scientific and technological point of view these perovskite systems are quite interesting. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)