961 resultados para Cadmium electroplating
Resumo:
Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.
Resumo:
Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. This study was undertaken to evaluate the impact of short-term cadmium exposure on metabolic patterns of the freshwater fish Oreochromis niloticus. The fish were exposed to 320, 640, 1280 and 2560 mug/l sublethal concentrations of Cd++ (CdCl2) in water for 7 days. The specific activities of the enzymes phosphofructo kinase (PFK-E.C.2.7.1.11.), lactate dehydrogenase (LDH-E.C.1.1.1.27.) and creatine kinase (CK-E.C.2.7.3.2.) were decreased in white muscle after cadmium treatments, indicating decreases in the capacity of glycolysis in this tissue. Cadmium exposure induced increased glucose concentration in white muscle of fish. on the other hand, cadmium exposure at sublethal concentrations increased phosphofructo kinase and LDH in red muscle of fish. Cadmium significantly decreased total protein concentrations in liver and white muscle regardless of tissue glycogen levels. The data suggest that cadmium acts as a stressor, leading to metabolic alterations similar to those observed in starvation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. Concentrations of metals are widely related to biochemical values which are used in disease diagnosis due to environmental toxicity. The acute combined effects of cadmium and nickel on biochemical parameters were determined and compared with those of Cd2+ or Ni2+ alone in rats. Male adult rats were given drinking solutions of CdCl2 [Cd(II) cation, 100 mg/liter] or NiSO4 [Ni(II) cation, 100 mg/liter]. For the combined treatment, the animals (Ni+Cd) received both Ni(II)) cation (100 mg/liter) and Cd(II) cation (100 mg/liter). Nickel treatment induced increased alanine transaminase (ALT) activity and hepatotoxicity, but not renal injury. In contrast, cadmium exposure produced hepatic, renal and myocardial damage, characterized by increased creatinine, total and direct bilirubin concentrations and increased ALT and lactate dehydrogenase (LDH) activities. The combined effect Ni-Cd is less toxic than cadmium alone, suggesting antagonism between these toxicants. The toxicity of nickel and cadmium, alone and in combination, decreased Cu-Zn superoxide dismutase (SOD) activity and increased lipoperoxide formation. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Chitin hydrogels of poly(vinylpyrrolidone) (VP) were prepared by means of the hydrogen peroxide graft copolymerization process. The effect of the VP grafted chain on water diffusion through the biopolymer was studied. Fourier transform infrared spectra of the VP-g-Ch showed an increase in the intensities of the hydroxyl and carbonyl stretching bands indicating a reduction in the hydrogen bonding of chitin. An investigation was undertaken regarding the adsorption of nickel(II) and cadmium(II) ions from aqueous solutions by the VP grafted chitin and the effects of the grafting degree on the Cd2+ and Ni2+ sorption were studied. The Cd2+ and Ni2+ adsorption equilibrium data correlate well with the Freundlich equation. The results indicate that the Ch-g-VP graft copolymer under investigation is a potentially powerful chelating material that can be employed for Ni2+ and Cd2+ ion removal from wastewater effluents. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The capacity of goethite for Cd-II substitution has been explored in a series of synthetic samples prepared from Fe-III and Cd-II nitrate solutions aged 21 days in alkaline media. The total metal content ([ Fe] + [ Cd]) was 0.071 M in all preparations. The samples have been characterized by chemical and X-ray diffraction analysis; the morphology of the solids is described. The cell parameters for all samples were obtained by the Rietveld fits to the X-ray diffraction data. Refined structures show that for samples prepared at the final molar ratio mu(Cd)less than or equal to5.50 (expressed as mu(Cd) = 100X[Cd]/[Cd] + [Fe]), a (Cd, Fe)-goethite is the only crystalline product. In these samples, the unit cell parameters increased as a function of Cd concentration, indicating Cd incorporation in the structural frame. At the preparative ratio, mu(Cd)=7.03, the incorporation of Cd in the goethite structure is drastically reduced and a probable Cd-substituted hematite is formed together with the Fe,Cd-goethite. (C) 2003 International Centre for Diffraction Data.
Resumo:
Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.
Resumo:
We have studied the thermal decomposition of the microcrystalline cellulose and some of its derivative such as pure carboxymethylcellulose (CMCH), phosphate cellulose (FOSCEL) and oxycellulose (OXICEL) and also these same derivatives containing adsorbed cadmium cations. We have used the TG,DTG tecniques in order to determine the quantity of retained cadmium II cations on the surface of these adsorbents.
Resumo:
The coordination polymers [Cd(mu-Cl)(2)(HPz)(2)](n) (1) and [Cd(mu-1,3-SCN)(2)(HPz)(2)](n) (2) (HPz = pyrazole) have been prepared and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction. Both complexes exhibited chain structures made by linear arrays of Cd(II) bridged by chloro (1) or inversely related 1,3-SCN groups (2) and the pyrazole ligands at the apical. sites. Intermolecular hydrogen bonds and another non-covalent interactions are responsible for the self-assembly of linear chains into 2D networks. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The molar single ion activity coefficients associated with hydrogen, copper(II), cadmium(II) and lead(II) ions were determined at 25 degrees C and ionic strengths between 0.100 and 3.00 M (NaClO4), whereas for acetate the ionic strengths were fixed between 0.300 and 2.00 M, held with the same inert electrolyte. The investigation was carried out potentiometrically by using proton-sensitive glass, copper, cadmium and lead ion-selective electrodes and a second-class Hg\Hg-2(CH3COO)(2) electrode. It was found that the activity coefficients of these ions (y(i)) can be assessed through the following empirical equations:log y(H) = -0.542I(0.5) + 0.451I; log y(Cu) = -1.249I(0.5) + 0.912I; log y(Cd) = -0.829I(0.5) + 0.448I(1.5);log y(Pb) = -0.404I(0.5) + 0.117I(2); and log y(Ac) = 0.0370I .
Resumo:
Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 l of blood samples was mixed with 500 l of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 g//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 g/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were significantly correlated with gender, whereas Cu and Pb were significantly correlated with age. There were also interesting differences in Mn and Se levels in the population living in the north of Brazil compared to the south.
Resumo:
Environmental toxicants and stress influence the health and behavior of people from different parts of the world. In the present study, aggressive behavior was evaluated in rats exposed to cadmium (Cd) for four weeks and subjected to immobilization stress (IS) based on the resident/intruder paradigm. Latency to the first bite (LB), total number of attacks (NA), total duration of attack manifestations (DAM), and a composite aggression score (CAS) were used to assess aggressiveness. Cadmium concentrations in the blood and the brain were determined. We observed that the parameters of aggressiveness were not altered by either Cd or IS when administered separately. However, animals exposed to Cd + IS had increased NA, DAM, and CAS. Cadmium was detected in the blood and the brain after treatment and Cd + IS exposure modified Cd distribution in these tissues. These results suggest that exposure to low levels of Cd associated with stress may lead to increased aggressiveness in rats. (C) 2011 Elsevier B.V. All rights reserved.