980 resultados para Boundary elements
Resumo:
Recently, a stream of project management research has recognized the critical role of boundary objects in the organization of projects. In this paper, we investigate how one advanced scheduling tool, the Integrated Master Schedule (IMS), is used as a temporal boundary object at various stages of complex projects. The IMS is critical to megaprojects which typically span long periods of time and face a high degree of complexity and uncertainty. In this paper, we conceptualize projects of this type as complex adaptive systems (CAS). We report the findings of four case projects on how the IMS mapped interactions, interdependencies, constraints, and fractal patterns of these emerging projects, and how the process of IMS visualization enabled communication and negotiation of project realities. This paper highlights that this advanced timeline tool acts as a boundary object and elicits shared understanding of complex projects from their stakeholders.
Resumo:
Young drivers aged 17-24 years are at a risk of death and injury from road crashes primarily due to their age and inexperience on the road. Our research aims to investigate if a gamified mobile tracking and intervention tool can help to address this issue. We aim to build a smartphone application to support the current process of logging driving hours using a physical logbook and pen in Queensland. This provides an easier way to log driving hours than recording them in a logbook. In an attempt to engage Learners and encourage them to undertake more diverse driving practice we will explore how game elements can be integrated into the experience to motivate Learners. Previous research in other domains has shown that framing tasks as game-like can help engage and motivate users, however the addition of game elements to this space provides some interesting design challenges. This paper presents an overview of the research and presents these challenges for further discussion.
Resumo:
Grounded Theory was used to examine the experiences of 13 participants who had attended psycho-educational support groups for those bereaved by suicide. Results demonstrated core and central categories which fit well with group therapeutic factors developed by Yalom (1995) and emphasised the importance of universality, imparting information and instilling hope, catharsis and self-disclosure, and broader meaning making processes surrounding acceptance or adjustment. Participants were commonly engaged in a lengthy process of oscillating between loss oriented and restoration focused reappraisals. The functional experience of the group comprised feeling normal within the group, providing a sense of permission to feel and to express emotions and thoughts and to bestow meaning. Structural variables of information and guidance and different perspectives on the suicide and bereavement were gained from other participants, the facilitators, group content and process. Personal changes, including in relationships and in their sense of self, assisted participants to develop an altered and more positive personal narrative.
Resumo:
A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.
Resumo:
The influence of inflow turbulence on the results of Favre–Reynolds-averaged Navier–Stokes computations of supersonic oblique-shock-wave/turbulent-boundary-layer interactions (shock-wave Mach-number MSW ∼2.9), using seven-equation Reynolds-stress model turbulence closures, is studied. The generation of inflow conditions (and the initialization of the flowfield) for mean flow, Reynolds stresses, and turbulence length scale, based on semi-analytic grid-independent boundary-layer profiles, is described in detail. Particular emphasis is given to freestream turbulence intensity and length scale. The influence of external-flow turbulence intensity is studied in detail both for flat-plate boundary-layer flow and for a compression-ramp interaction with large separation. It is concluded that the Reynolds-stress model correctly reproduces the effects of external flow turbulence.
Resumo:
Systematic studies that evaluate the quality of decision-making processes are relatively rare. Using the literature on decision quality, this research develops a framework to assess the quality of decision-making processes for resolving boundary conflicts in the Philippines. The evaluation framework breaks down the decision-making process into three components (the decision procedure, the decision method, and the decision unit) and is applied to two ex-post (one resolved and one unresolved) and one ex-ante cases. The evaluation results from the resolved and the unresolved cases show that the choice of decision method plays a minor role in resolving boundary conflicts whereas the choice of decision procedure is more influential. In the end, a decision unit can choose a simple method to resolve the conflict. The ex-ante case presents a follow-up intended to resolve the unresolved case for a changing decision-making process in which the associated decision unit plans to apply the spatial multi criteria evaluation (SMCE) tool as a decision method. The evaluation results from the ex-ante case confirm that the SMCE has the potential to enhance the decision quality because: a) it provides high quality as a decision method in this changing process, and b) the weaknesses associated with the decision unit and the decision procedure of the unresolved case were found to be eliminated in this process.
Resumo:
Purpose: Generation Y (Gen Y) is the newest and largest generation entering the workforce. Gen Y may differ from previous generations in work-related characteristics which may have recruitment and retention repercussions. Currently, limited theoretically-based research exists regarding Gen Y’s work expectations and goals in relation to undergraduate students and graduates. Design/methodology/approach: This study conducted a theoretically-based investigation of the work expectations and goals of student- and working-Gen Y individuals based within a framework incorporating both expectancy-value and goal setting theories. N = 398 provided useable data via an on-line survey. Findings: Overall, some support was found for predictions with career goals loading on a separate component to daily work expectations and significant differences between student- and working- Gen Y on career goals. No significant differences were found, however, between the two groups in daily work expectations. Research limitations/implications: Future research may benefit from adopting a theoretical framework which assesses both daily work expectations and career goals when examining the factors which motivate Gen Y’s decisions to join and remain at a particular organisation. Practical implications: At a practical level, based on the findings, some examples are provided of the means by which organisations may draw upon daily work expectations and career goals of importance to Gen Y and, in doing so, influence the likelihood that a Gen Y individual will join and remain at their particular organisation. Originality/value: This research has demonstrated the utility of adopting a sound theoretical framework in furthering understanding about the motivations which influence organisations’ ability to recruit and retain Gen Y, among both student Gen Y as well as those Gen Y individuals who are already working.
Resumo:
Sustainability, safety and smartness are three key elements of a modern transportation system. This study illustrates various policy directions and initiatives of Singapore to address how its transportation system is progressing in light of these three components. Sustainability targets economical efficiency, environmental justice and social equity by including policies for integrating land use and transport planning, ensuring adequate transport supply measures, managing travel demand efficiently, and incorporating environment-friendly strategies. Safety initiatives of its transportation system aim to minimize injuries and incidents of all users including motorists, public transport commuters, pedestrians, and bicyclists. Smartness incorporates qualities like real time sensing, fast processing and decision making, and automated action-taking into its control, monitoring, information management and revenue collection systems. Various policy implications and technology applications along these three directions reveal that smart technologies facilitate implementation of policies promoting sustainability and safety. The Singapore experience could serve as a good reference for other cities in promoting a transportation system that is sustainable, safe and smart.
Resumo:
Portable water filled barriers (PWFB) are semi-rigid roadside barriers which have the potential to display good crash attenuation characteristics at low and moderate impact speeds. The traditional mesh based numerical methods alone fail to simulate this type of impact with precision, stability and efficiency. This paper proposes to develop an advanced simulation model based on the combination of Smoothed Particles Hydrodynamics (SPH), a meshless method, and finite element method (FEM) for fluid-structure analysis using the commercially available software package LS-Dyna. The interaction between SPH particles and FEA elements is studied in this paper. Two methods of element setup at the element boundary were investigated. The response of the impacted barrier and fluid inside were analysed and compared. The system response and lagging were observed and reported in this paper. It was demonstrated that coupled SPH/FEM can be used in full scale PWFB modelling application. This will aid the research in determining the best initial setup to couple FEA and SPH in road safety barrier for impact response and safety analysis in the future.
Resumo:
In recent years, enterprise architecture (EA) has captured increasing interest as a means to systematically consolidate and manage various enterprise artefacts in order to provide holistic decision support for business/IT alignment and business/IT landscapes management. To provide a holistic perspective on the enterprise over time, EA frameworks need to co-evolve with the changes in the enterprise and its IT over time. In this paper we focus on the emergence of Service-Oriented Architecture (SOA). There is a need to integrate SOA with EA to keep EA relevant and to use EA products to help drive successful SOA. This paper investigates and compares the integration of SOA elements in five widely used EA frameworks: Archimate, The Open Group Architecture Framework (TOGAF), Federal Enterprise Architecture Framework (FEAF), Department of Defence Architecture Framework (DoDAF) and the Ministry of Defence Architecture Framework (MODAF). It identifies what SOA elements are considered and their relative position in the overall structure. The results show that services and related elements are far from being well-integrated constructs in current EA frameworks and that the different EA frameworks integrated SOA elements in substantially different ways. Our results can support the academic EA and SOA communities with a closer and more consistent integration of EA and SOA and support practitioners in identifying an EA framework that provides the SOA support that matches their requirements.
Resumo:
Organisations are engaging in e-learning as a mechanism for delivering flexible learning to meet the needs of individuals and organisations. In light of the increasing use and organisational investment in e-learning, the need for methods to evaluate the success of its design and implementation seems more important than ever. To date, developing a standard for the evaluation of e-learning appears to have eluded both academics and practitioners. The currently accepted evaluation methods for e-learning are traditional learning and development models, such as Kirkpatrick’s model (1976). Due to the technical nature of e-learning it is important to broaden the scope and consider other evaluation models or techniques, such as the DeLone and McLean Information Success Model, that may be applicable to the e-learning domain. Research into the use of e-learning courses has largely avoided considering the applicability of information systems research. Given this observation, it is reasonable to conclude that e-learning implementation decisions and practice could be overlooking useful or additional viewpoints. This research investigated how existing evaluation models apply in the context of organisational e-learning, and resulted in an Organisational E-learning success Framework, which identifies the critical elements for success in an e-learning environment. In particular this thesis highlights the critical importance of three e-learning system creation elements; system quality, information quality, and support quality. These elements were explored in depth and the nature of each element is described in detail. In addition, two further elements were identified as factors integral to the success of an e-learning system; learner preferences and change management. Overall, this research has demonstrated the need for a holistic approach to e-learning evaluation. Furthermore, it has shown that the application of both traditional training evaluation approaches and the D&M IS Success Model are appropriate to the organisational e-learning context, and when combined can provide this holistic approach. Practically, this thesis has reported the need for organisations to consider evaluation at all stages of e-learning from design through to implementation.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
A growing body of researches provided evidence of the successful design in particular focus on design elements, ranging from colour, lighting, technology, landscape and spatial arrangement. However, no example or literature investigates the opportunities for linking these design elements in a practical base. Drawing upon existing architectural design theory, this paper investigates the relationship between design elements regards to public’s behavioural response to the public space. The aims of this paper are two-fold: first to examine whether there is a direct relationship between the two, and second to find out how the design elements could be coordinated together to influence not only the activities but also the environment, function and experience. To meet this objective, observation, behavioural mapping, interview and cognitive mapping methodologies are used. The present study involves two local case studies to find out the relationship between design elements in order to assist the design of a better public space for public activities. Correlation between the design elements shows that public activities is more likely to happen in relatively space with well balance of design. These finding provide a better understanding of public space design by gaining deeper perceptive between design and user’s behaviour, consequently improving social activities and interactions in public space. Moreover, it focuses on campus public areas which can be a vital aspect of university campus and play a valuable role in the overall success of public space design.
Resumo:
Tanzania has a rich and diverse cultural history based on community cultural life. However, at present, young people have limited opportunity to exploit this richness of creative expressions and engage in creative jobs as their future career. Hence, the significant challenge remains: how to integrate Intangible cultural heritage elements and learning strategy as a means of promoting creative jobs for youth. This paper presents a case study on 'Strategies for youth employment in Tanzania: A creative industries approach'. The case study employed mixed methods incorporating questionnaires, interviews and focus groups and was held in Dar-Es-Salaam, Mwanza, Dodoma, Lindi and Morogoro from July to October, 2012. This paper discusses some of the issues and argues that there is no virtual utilization of the intangible cultural heritage knowledge and skills in 'putting education to work' (UNESCO, 2012) for the better prospects of youth. Although the discussion is specific to Tanzania, the case may also apply to other developing countries.
Resumo:
A numerical investigation has been carried out for the coupled thermal boundary layers on both sides of a partition placed in an isosceles triangular enclosure along its middle symmetric line. The working fluid is considered as air which is initially quiescent. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes three distinct stages; namely an initial stage, a transitional stage and a steady state stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed and compared with the non-partitioned enclosure. Moreover, heat transfer as a form of local and overall average Nusselt number through the coupled thermal boundary layers and the inclined walls is also examined.