896 resultados para Bezier patches
Resumo:
The intestinal immune system hasthe complex task to protect the sterilecore of the organism against invasion.Most of invasive enterobacteria targetintestinal epithelial cells (IEC) inducingmajor damages to the mucosa.Shigella flexneri, by invading IECand inducing inflammatory responsesof the colonic mucosa, causes bacillarydysentery, a bloody diarrhea thatis endemic worldwide. The mechanismof entry of this bacterium is stilla matter of debate. Mcells participatingin sampling antigens from the gutlumen through Peyers patches arecommonly considered as the primarysite of entry of the bacteria. Once inthe lamina propria, Shigella can invadeIEC via their basolateral poleand spread from cell-to-cell leading tomassive tissue destruction. More recently,data are accumulating demonstratingthat bacteria can also enter thelamina propria directly via IEC, underscoringIEC as another gate of entry.In addition, the protective role ofsecretory IgA (SIgA) produced byplasmocytes of the lamina propria hasbeen established in shigellosis contextbut few is known about its role inmaintaining IEC monolayer integrity.Here, the impact of the bacterium wasstudied using polarized CaCo 2 cellmonolayer apically infected with avirulent strain of S. flexneri eitheralone or complexed with its cognateanti LPS SIgA. Parameters associatedwith the infection process includingcytokine measurements (IL-8, IL-18)and laser scanning confocal microscopydetection of Zonula Occludens-1, a tight junction (TJ) protein werestudied.We demonstrate that bacteriaare able to infect IEC through theirluminal-like pole as well, inducingthe complete disruption of TJ and thedestruction of the whole reconstitutedCaCo-2 cell monolayer. SIgA uponneutralization of bacteria led to themaintenance of TJ supporting IEC integrity,and the modulation of cytokinereleases. Together with anti-inflammatoryproperties of SIgA, thefact that apical bacteria can damagethe IEC without the intervention ofother cells such as Mcells offers newpossibilities in understanding thepathogenic mechanisms involved inshigellosis.
Resumo:
Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.
Resumo:
The milk-borne mouse mammary tumor virus (MMTV) infects newborn mice via the intestine. Infection is initially restricted to Peyer's patches and later spreads to the epithelial cells of the mammary gland. The receptor that mediates uptake and transport of MMTV across the intestinal barrier has not yet been identified, The neonatal Fc receptor (nFcR), which is expressed by enterocytes during the first two weeks of life, is downregulated at weaning, and its disappearance correlates with the onset of intestinal resistance to MMTV. To test whether the nFcR mediates transport and allows infection, we foster nursed on infected MMTV mothers beta2 microglobulin-deficient (beta2m-deficient) newborn mice that are unable to express the nFcR at the surface of their enterocytes. Exposure of beta2m-deficient mice to milk-borne virus resulted in the deletion of peripheral blood T cells reactive to the superantigen encoded by MMTV. Since beta2m-deficient newborn mice are susceptible to MMTV infection despite the lack of the nFcR, we conclude that the nFcR is not required for MMTV transport.
Resumo:
BACKGROUND & AIMS: Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. METHODS: Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. RESULTS: Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. CONCLUSIONS: We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.
Resumo:
The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
Explaining the evolution of sociality is challenging because social individuals face disadvantages that must be balanced by intrinsic benefits of living in a group. One potential route towards the evolution of sociality may emerge from the avoidance of dispersal, which can be risky in some environments. Although early studies found that local competition may cancel the benefits of cooperation in viscous populations, subsequent studies have identified conditions, such as the presence of kin recognition or specific demographic conditions, under which altruism will still spread. Most of these studies assume that the costs of cooperating outweigh the direct benefits (strong altruism). In nature, however, many organisms gain synergistic benefits from group living, which may counterbalance even costly altruistic behaviours. Here, we use an individual based model to investigate how dispersal and social behaviour co-evolve when social behaviours result in synergistic benefits that counterbalance the relative cost of altruism to a greater extent than assumed in previous models. When the cost of cooperation is high, selection for sociality responds strongly to the cost of dispersal. In particular, cooperation can begin to spread in a population when higher cooperation levels become correlated with lower dispersal tendencies within individuals. In contrast, less costly social behaviours are less sensitive to the cost of dispersal. In line with previous studies, we find that mechanisms of global population control also affect this relationship: when whole patches (groups) go extinct each generation, selection favours a relatively high dispersal propensity, and social behaviours evolve only when they are not very costly. If random individuals within groups experience mortality each generation to maintain a global carrying capacity, on the other hand, social behaviours spread and dispersal is reduced, even when the latter is not costly.
Resumo:
SUMMARY The human auditory cortex, located on the supratemporal plane of the temporal lobe, is divided in a primary auditory area and several non-primary areas surrounding it. These different areas show anatomical and functional differences. Many studies have focussed on auditory areas in non-human primates, using investigation techniques such as electrophysiological recordings, tracing of neural connections, or immunohistochemical and histochemical staining. Some of these studies have suggested parallel and hierarchical organization of the cortical auditory areas as well as subcortical auditory relays. In humans, only few studies have investigated these regions immunohistochemically, but activation and lesion studies speak in favour of parallel and hierarchical organization, very similar to that of non-human primates. Calcium-binding proteins and metabolic markers were used to investigate possible correlates of hierarchical and parallel organization in man. Calcium-binding proteins, parvalbumin, calretinin and calbindin, modulate the concentration of intracellular free calcium ions and were found in distinct subpopulations of GABAergic neurons in non-human primates species. In our study, their distribution showed several differences between auditory areas: the primary auditory area was darkly stained for both parvalbumin and calbindin, and their expression rapidly decreased while moving away from the primary area. This staining pattern suggests a hierarchical organization of the areas, in which the more darkly stained areas could correspond to an earlier integration level and the areas showing light staining may correspond to higher level integration areas. Parallel organization of primary and non-primary auditory areas was suggested by the complementarity, within a given area, between parvalbumin and calbindin expression across layers. To investigate the possible differences in the energetic metabolism of the cortical auditory areas, several metabolic markers were used: cytochrome oxidase and LDH1 were used as oxidative metabolism markers and LDH5 was used as glycolytic metabolism marker. The results obtained show a difference in the expression of enzymes involved in oxidative metabolism between areas. In the primary auditory area the oxidative metabolism markers were maximally expressed in layer IV. In contrast, higher order areas showed maximal staining in supragranular layers. The expression of LDH5 varied in patches, but did not differ between the different hierarchical auditory areas. The distribution of the two LDH enzymes isoforms also provides information about cellular aspects of metabolic organization, since neurons expressed the LDH1 isoform whereas astrocytes express primarily LDH5, but some astrocytes also contained the LDH1 isoform. This cellular distribution pattern supports the hypothesis of the existence of an astrocyte-neuron lactate shuttle, previously suggested in rodent studies, and in particular of lactate transfer from astrocytes, which produce lactate from the glucose obtained from the circulation, to neurons that use lactate as energy substrate. In conclusion, the hypothesis of parallel and hierarchical organization of the auditory areas can be supported by CaBPs, cytochrome oxidase and LDH1 distribution. Moreover, the two LDHs cellular distribution pattern support the hypothesis of an astrocyte-neuron lactate shuttle in human cortex.
Resumo:
The spatial configuration of metapopulations (numbers, sizes, and localization of patches) affects their ability to resist demographic extinction and genetic drift, but sometimes with opposite effects. Small and isolated patches, for instance, contribute marginally to demography but may play a large role in genetics by maintaining a sizeable amount of genetic variance among demes. In source-sink systems, similarly, connectivity may be beneficial in terms of effective size, but detrimental in terms of survival, by lowering the reproductive value of source populations. How to reconcile these opposite effects? Here we propose an analytical framework that integrates fixation time (ability to resist genetic drift) and extinction time (ability to resist demographic extinction) into a single index of resistance, measuring the ability of a metapopulation to maintain its demo-genetic integrity. We then illustrate with numerical examples how conflicting demands may be resolved.
Resumo:
Oral administration of rabbit secretory IgA (sIgA) to adult BALB/c mice induced IgA+, IgM+, and IgG+ lymphoblasts in the Peyer's patches, whose fusion with myeloma cells resulted in hybridomas producing IgA, IgM, and IgG1 antibodies to the secretory component (SC). This suggests that SC could serve as a vector to target protective epitopes into mucosal lymphoid tissue and elicit an immune response. We tested this concept by inserting a Shigella flexneri invasin B epitope into SC, which, following reassociation with IgA, was delivered orally to mice. To identify potential insertion sites at the surface of SC, we constructed a molecular model of the first and second Ig-like domains of rabbit SC. A surface epitope recognized by an SC-specific antibody was mapped to the loop connecting the E and F beta strands of domain I. This 8-amino acid sequence was replaced by a 9-amino acid linear epitope from S. flexneri invasin B. We found that cellular trafficking of recombinant SC produced in mammalian CV-1 cells was drastically altered and resulted in a 50-fold lower rate of secretion. However, purification of chimeric SC could be achieved by Ni2+-chelate affinity chromatoraphy. Both wild-type and chimeric SC bound to dimeric IgA, but not to monomeric IgA. Reconstituted sIgA carrying the invasin B epitope within the SC moiety triggers the appearance of seric and salivary invasin B-specific antibodies. Thus, neo-antigenized sIgA can serve as a mucosal vaccine delivery system inducing systemic and mucosal immune responses.
Resumo:
The populations of Capercaillie (Tetrao urogallus), the largest European grouse, have seriously declined during the last century over most of their distribution in western and central Europe. In the Jura mountains, the relict population is now isolated and critically endangered (about 500 breeding adults). We developed a simulation software (TetrasPool) that accounts for age and spatial structure as well as stochastic processes, to perform a viability analysis and explore management scenarios for this population, capitalizing on a 24 years-long series of field data. Simulations predict a marked decline and a significant extinction risk over the next century, largely due to environmental and demographic stochasticity (average values of life-history parameters would otherwise allow stability). Variances among scenarios mainly stem from uncertainties about the shape and intensity of density dependence. Uncertainty analyses suggest to focus conservation efforts on enhancing, not only adult survival (as often advocated for long-lived species), but also recruitment. The juvenile stage matters when local populations undergo extinctions, because it ensures connectivity and recolonization. Besides limiting human perturbations, a silvicultural strategy aimed at opening forest structure should improve the quality and surface of available patches, independent of their size and localization. Such measures are to be taken urgently, if the population is to be saved.
Resumo:
This study aimed to evaluate the influence of water velocity speed on the local distribution and taxocenosis structure of blackfly larvae. The larvae were collected from two adjacent streams located in the municipality of Angra dos Reis (RJ): Caputera River and one of its tributaries. Riffle litter patches were sampled randomly using a 30 x 30 cm quadrat. Four blackfly species were found: Simulium incrustatum s. l. Lutz, 1910; Simulium (Inaequalium) sp. ; Simulium pertinax s. l. Kollar, 1832 and Simulium subpallidum s. l. Lutz, 1909. Among these species, Simulium pertinax s. l. was clearly associated with higher water current speeds, while Simulium subpallidum s. l. showed association with lower water velocities, and Simulium (Inaequalium) sp. had a relatively constant distribution along the water current gradient.
Resumo:
La serie de datos sobre clorófila, producción primaria y nutrientes de la costa pe ruana (4º -18º S) reunidos por el IMARPE a través de varios años ha permitido establecer los patrones promedio de su distribución en la superficial del mar. El principal objetivo del presente estudio fue la variabilidad a toda escala incluyendo "El Niño". Las fluctuaciones a corto plazo fueron evidentes dentro del periodo 1964-1978 pero no lograron alterar una distribución característica para todo el periodo. La intensidad estacional del afloramiento en el norte y sur (otoño e invierno) estuvo relacionada a la distribución de nutrientes, clorofila y productividad del fitoplancton cuya ocurrencia en ''patches" y lenguas reflejó la dinámica que gobierna la región costera de Perú como resultado del flujo de aguas oceánicas hacia la costa y del flujo de aguas afloradas Juera de la costa. El ciclo estacional de fitoplancton medido en base a su biomasa comienza en primavera cuando el régimen local de luz mejora, las concentraciones de clorófila alcanzan su máximo a mediados de verano y comienzos de otoño decreciendo en invierno; de esta variabilidad en la abundancia resulta una correlación estacional negativa con los nutrientes en verano e invierno. Similar tendencia mostró la distribución de producción primaria cuyas máximas estuvieron relacionadas con las aguas frías a lo largo de la costa. La distribución latitudinal de clorófila en la costa peruana durante los años de ocurrencia de El Niño mostró características diferentes del patrón normal especialmente en 1976. Las concentraciones se hallaron muy pegadas a la costa, una excepción fueron. las áreas donde dominó el dinoflagelado Gymnodinium splendens con una distribución más alejada de la costa. Los años cálidos se caracterizaron por una baja biomasa del fitoplancton en relación a la media de 1966 considerado como un año de condiciones promedio. El rango anual de la concentración de nutrientes encontrado a una temperatura dada mostró límites definidos para las diferentes estaciones del año. En respuesta al incremento de la temperatura Juera de la costa (norte y oeste) las variables químicas y biológicas decrecieron.
Resumo:
Pollinator guild organization and its consequences for reproduction in three synchronopatric species of Tibouchina (Melastomataceae). In co-flowering plant species, pollinator sharing can result in interspecific pollen transfer and fecundity reduction. Competition will be relaxed whenever there is a large amount of initial pollen supply or if each plant species occupies different habitat patches. Reproduction in Tibouchina cerastifolia (Naudin) Cogn., T. clinopodifolia (DC.) Cogn. and T. gracilis (Bonpl.) Cogn. was studied in an area of Atlantic rainforest to examine whether synchronopatry induces time partitioning among pollinator species. Eleven bee species comprised the pollinator guild. Among pollinators, there were overlaps in bee species composition and in flower visitation time. Direct competition for pollen in Tibouchina Aubl. at the study site seems to lead to different activity periods among the bee species, in which Bombus pauloensis Friese,1913 was most active earlier, while the other species were active later in the day. Bombus pauloensis, the largest bee species recorded on Tibouchina flowers, was the most important and efficient pollinator. This species harvested pollen before the other species and had the shortest handling time. The plants reproduced sexually by selfing or outcrossing, and hybridization was not avoided by incompatibility reactions at the style. The avoidance of direct competition for pollen and no pollinator partitioning among the synchronopatric species of Tibouchina may reflect a facilitative interaction among these pioneer plants.
Resumo:
In this paper, an extension of the multi-scale finite-volume (MSFV) method is devised, which allows to Simulate flow and transport in reservoirs with complex well configurations. The new framework fits nicely into the data Structure of the original MSFV method,and has the important property that large patches covering the whole well are not required. For each well. an additional degree of freedom is introduced. While the treatment of pressure-constraint wells is trivial (the well-bore reference pressure is explicitly specified), additional equations have to be solved to obtain the unknown well-bore pressure of rate-constraint wells. Numerical Simulations of test cases with multiple complex wells demonstrate the ability of the new algorithm to capture the interference between the various wells and the reservoir accurately. (c) 2008 Elsevier Inc. All rights reserved.