970 resultados para BONE-MORPHOGENETIC PROTEIN-4
Resumo:
Background: Helicobacter pylori infection is usually acquired in childhood and persists into adulthood if untreated. The bacterium induces a chronic inflammatory response, which is associated with epigenetic alterations in oncogenes, tumor-suppressor genes, cell-cycle regulators, and cell-adhesion molecules. Aim: The aim of this study was to analyze the effect of H. pylori infection on the methylation status of Thrombospondin-1 (THBS1), Hypermethylated in cancer 1 (HIC1) and Gata binding protein-4 (GATA-4) in gastric biopsy samples from children and adults infected or uninfected with the bacterium and in samples obtained from gastric cancer patients. Methods: The methylation pattern was analyzed with methylation-specific PCR. Results: Our results showed that H. pylori infection was associated with methylation of the promoter regions of the THBS1 and GATA-4 genes in pediatric and adult samples (p < 0.01). HIC1 showed the lowest level of methylation, which was not an early event during gastric carcinogenesis. Conclusions: The results from this study indicate that methylation of THBS1 and GATA-4 occurs in the early stages of chronic gastritis and gastric cancer in association with H. pylori infection; however, in gastric cancer samples, other mechanisms cooperate with the down-regulation of these genes. Methylation of HIC1 may not be the principal mechanism implicated in its down-regulation in gastric cancer samples. © 2013 Springer Science+Business Media New York.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this systematic review was to evaluate clinical and safety data for recombinant human bone morpho-genetic protein-2 (rhBMP-2) in an absorbable collagen sponge (ACS) carrier when used for alveolar ridge/maxillary sinusaugmentation in humans.Materials and Methods: Clinical studies/case ser ies published 1980 through June 2012 using rhBMP-2/ACS were searched.Studies meeting the following criteria were considered eligible for inclusion: >10 subjects at baseline and maxillary sinus oralveolar ridge augmentation not concomitant with implant placement.Results: Seven of 69 publications were eligible for review. rhBMP-2/ACS yielded clinically meaningful bone formationfor maxillary sinus augmentation that would allow placement of regular dental implants without consistent differencesbetween rhBMP-2 concentrations. Never theless, the statistical analysis showed that sinus augmentation following autog-enous bone graft was significantly greater (mean bone height: 1.6 mm, 95% CI: 0.5–2.7 mm) than for rhBMP-2/ACS(rhBMP-2 at 1.5 mg/mL). In extraction sockets, rhBMP-2/ACS maintained alveolar ridge height while enhancing alve olarridge width. Safety reports did not represent concerns for the proposed indications.Conclusions: rhBMP-2/ACS appears a promising alternative to autogenous bone grafts for alveolar ridge/maxillary sinusaugmentation; dose and carrier optimization may expand its efficacy, use, and clinical application.
Resumo:
Objectives The objective of this study was to develop a technique for detecting cortical bone dimensional changes in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ). Study Design Subjects with BRONJ who had cone-beam computed tomography imaging were selected, with age- and gender-matched controls. Mandibular cortical bone measurements to detect bisphosphonate-related cortical bone changes were made inferior to mental foramen, in 3 different ways: within a fixed sized rectangle, in a rectangle varying with the cortical height, and a ratio between area and height. Results Twelve BRONJ cases and 66 controls were evaluated. The cortical bone measurements were significantly higher in cases than controls for all 3 techniques. The bone measurements were strongly associated with BRONJ case status (odds ratio 3.36-7.84). The inter-rater reliability coefficients were high for all techniques (0.71-0.90). Conclusions Mandibular cortical bone measurement is a potentially useful tool in the detection of bone dimensional changes caused by bisphosphonates. Long-term administration of bisphosphonates (BPs) affects bone quality and metabolism following accumulation in bone.1 Since the first cases of bisphosphonate-related osteonecrosis of the jaw (BRONJ) were published in 2003,2 there has been a search for factors that can predict the onset of the condition. Oral and intravenous BPs reduce bone resorption, increase mineral content of bone, and alter bony architecture.3, 4, 5 and 6 Previous studies have demonstrated these changes both radiographically and following histologic analysis.1, 3, 7, 8, 9 and 10 The BP-related jaw changes may present radiological features, such as thickening of lamina dura and cortical borders, diffuse sclerosis, and narrowing of the mandibular canal3 and 11; however, oral radiographs of patients taking BPs do not consistently show radiographic changes to the jaws.11 and 12 The challenge is to find imaging tools that could improve the detection of changes in the bone associated with BP use. Various skeletal radiographic features associated with BRONJ in conventional periapical and panoramic radiographs, computed tomography, magnetic resonance imaging, and nuclear bone scanning have been described.3, 8, 9, 10 and 11 There has also been a search for BP-related quantitative methods for the evaluation of radiographic images, to avoid observer subjectivity in interpretation. Factors thought to be important include trabecular and cortical structure, and bone mineralization.4 Consequently, measurable bone data have been reported in subjects taking BPs through many techniques, including bone density, architecture, and cortical bone thickness.1, 4, 7 and 13 Trabecular microarchitecture of postmenopausal women has been evaluated with noninvasive techniques, such as high-resolution magnetic resonance images showing less deterioration of the bone 1 year after initiation of oral BP therapy.4 A decrease in bone turnover and a trend for an increase in the bone wall thickness has been detected by histomorphometry in subjects taking BPs.1 Alterations in the cortical structure of the second metacarpal have been detected in digital x-ray radiogrammetry of postmenopausal women treated with BPs.7 Mandibular cortical width may be measured on dental panoramic radiographs, and it has been suggested as a screening tool for referring patients for bone densitometry for osteoporosis investigation.14 and 15 Inhibition of the intracortical bone remodeling in the mandible of mice taking BPs has been reported.16 Thus, imaging evaluation of the mandibular cortical bone could be a biologically plausible way to detect BP bone alterations. Computed tomography can assess both cortical and trabecular bone characteristics. Cone-beam computed tomography (CBCT) can provide 3-dimensional information, while using lower doses and costing less than conventional CT. The CBCT images have been studied as a tool for the measurement of trabecular bone in patients with BRONJ.13 Therefore, cortical bone measurements on CBCT of the jaws might also help to understand bone changes in patients with BRONJ. There is no standard in quantifying dimensional changes of mandibular cortical bone. We explored several different approaches to take into consideration possible changes in length, area, and volume. These led to the 3 techniques developed in this study. This article reports a matched case-control study in which mandibular cortical bone was measured on CBCT images of subjects with BRONJ and controls. The aim of the study was to explore the usefulness of 3 techniques for detecting mandibular cortical bone dimensional changes caused by BP.
Resumo:
Background: The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-beta. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of Sao Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results: We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion: We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design: Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study
Resumo:
Abstract Findings We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 and Cfdp1), four are associated with cell signalling pathways (Lrp6, Dvl1, Ecsit and PKCδ) and seven are associated with the extracellular matrix (Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 and IGFBP-rP10). The novel identified genes include: Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 and IGFBP-rP10. Background BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction in vitro and in vivo, and both proteins are therapeutically applied in orthopaedics and dentistry. Conclusion Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.
Resumo:
Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.
Resumo:
The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.
Resumo:
Bone morphogenetic proteins (BMP) have to be applied at high concentrations to stimulate bone healing. The limited therapeutic efficacy may be due to the local presence of BMP antagonists such as Noggin. Thus, inhibiting BMP antagonists is an attractive therapeutic option. We hypothesized that the engineered BMP2 variant L51P stimulates osteoinduction by antagonizing Noggin-mediated inhibition of BMP2. Primary murine osteoblasts (OB) were treated with L51P, BMP2, and Noggin. OB proliferation and differentiation were quantified with XTT and alkaline phosphatase (ALP) assays. BMP receptor dependent intracellular signaling in OB was evaluated with Smad and p38 MAPK phosphorylation assays. BMP2, Noggin, BMP receptor Ia/Ib/II, osteocalcin, and ALP mRNA expressions were analyzed with real-time PCR. L51P stimulated OB differentiation by blocking Noggin mediated inhibition of BMP2. L51P did not induce OB differentiation directly and did not activate BMP receptor dependent intracellular signaling via the Smad pathway. Treatment of OB cultures with BMP2 but not with L51P resulted in an increased expression of ALP, BMP2, and Noggin mRNA. By inhibiting the BMP antagonist Noggin, L51P enhances BMP2 activity and stimulates osteoinduction without exhibiting direct osteoinductive function. Indirect osteoinduction with L51P seems to be advantageous to osteoinduction with BMP2 as BMP2 stimulates the expression of Noggin thereby self-limiting its own osteoinductive activity. Treatment with L51P is the first protein-based approach available to augment BMP2 induced bone regeneration through inhibition of BMP antagonists. The described strategy may help to decrease the amounts of exogenous BMPs currently required to stimulate bone healing.
Resumo:
OBJECTIVE: To analyze the clinical outcome of horizontal ridge augmentation using autogenous block grafts covered with an organic bovine bone mineral (ABBM) and a bioabsorbable collagen membrane. MATERIAL AND METHODS: In 42 patients with severe horizontal bone atrophy, a staged approach was chosen for implant placement following horizontal ridge augmentation. A block graft was harvested from the symphysis or retromolar area, and secured to the recipient site with fixation screws. The width of the ridge was measured before and after horizontal ridge augmentation. The block graft was subsequently covered with ABBM and a collagen membrane. Following a tension-free primary wound closure and a mean healing period of 5.8 months, the sites were re-entered, and the crest width was re-assessed prior to implant placement. RESULTS: Fifty-eight sites were augmented, including 41 sites located in the anterior maxilla. The mean initial crest width measured 3.06 mm. At re-entry, the mean width of the ridge was 7.66 mm, with a calculated mean gain of horizontal bone thickness of 4.6 mm (range 2-7 mm). Only minor surface resorption of 0.36 mm was observed from augmentation to re-entry. CONCLUSIONS: The presented technique of ridge augmentation using autogenous block grafts with ABBM filler and collagen membrane coverage demonstrated successful horizontal ridge augmentation with high predictability. The surgical method has been further simplified by using a resorbable membrane. The hydrophilic membrane was easy to apply, and did not cause wound infection in the rare instance of membrane exposure.
Resumo:
OBJECTIVES: To compare the histological features of bone filled with Bio-Oss, Ostim-Paste or PerioGlas placed in defects in the rabbit tibiae by evaluating bone tissue composition and the integration of titanium implants placed in the grafted bone. MATERIAL AND METHODS: Two cylindrical bone defects, about 4 mm in diameter and 6 mm in depth, were created in the tibiae of 10 rabbits. The defects were filled with either Bio-Oss, PerioGlas, Ostim-Paste or left untreated, and covered with a collagen membrane. Six weeks later, one titanium sandblasted and acid-etched (SLA) implant was inserted at the centre of each previously created defect. The animals were sacrificed after 6 weeks of healing. RESULTS: Implants placed in bone previously grafted with Bio-Oss, PerioGlas or Ostim-Paste obtained a larger extent of osseointegration, although not statistically significant, than implants placed in non-grafted bone. The three grafting materials seemed to perform in a similar way concerning their contribution towards implant osseointegration. All grafting materials appeared to be osteoconductive, thus leading to the formation of bridges of mineralized bone extending from the cortical plate towards the implants surface through the graft scaffold. CONCLUSIONS: Grafting with the above-mentioned biomaterials did not add any advantage to the osseointegration of titanium SLA implants in a self-contained defect.
Resumo:
BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.
Resumo:
Prostate cancer is the most common cancer among men in industrialised countries. Most patients with prostate cancer, however, will not die of it. As a result, many of them will experience symptomatic metastasis during the course of the disease. Prostate cancer has a high propensity to metastasize to bone. Unlike many other cancers prostate cancer cells induce a rather osteosclerotic than osteolytic reaction in the bone marrow by interfering with physiological bone remodelling. A proper understanding of the mechanisms of tumour cell-induced bone alterations and exaggerated bone deposition in prostate cancer may open new and urgently needed therapeutic approaches in the field of palliative care for affected patients. In this review we focus on the central role of two major regulators of bone mass, the wingless type integration site family members (WNTs) and the bone morphogenetic proteins (BMPs), in the development of osteosclerotic bone metastases.
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.