765 resultados para Artéria umbilical


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prospectively studied the course of colonization and sepsis with Staphylococcus epidermidis among 29 very low birth weight neonates undergoing prolonged umbilical catheterization. S. epidermidis bacteremia occurred in 7 patients. In 6 bacteremia was preceded by positive colonization cultures. Isolates obtained from nares, base of umbilicus, umbilical catheter entry sites, catheter tips and blood were examined for plasmid DNA profiles. In 4 patients the plasmid profiles of the catheter entry site isolates were identical with those of the blood isolates. In the other 3 bacteremic patients plasmid profiles of the catheter entry site and blood isolates were different. No correlation was observed in the plasmid DNA patterns of isolates obtained from catheter tip cultures as compared to the corresponding blood cultures. The blood isolates from bacteremic patients had different plasmid profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune vasculitis is characterized by the presence of autoantibodies, particularly anti-neutrophil cytoplasmic antibodies (ANCA) and anti-nuclear antibodies (ANA), in patient sera. These autoantibodies have an incompletely understood role in development of vascular injury. The expression or up-regulation of cell adhesion molecules is an early phase in the development of an inflammatory vascular lesion. Autoantibody-positive sera from patients with vasculitis were assessed for their ability to modulate adhesion molecule expression by human umbilical vein endothelial cells (HUVEC). Autoantibody-positive serum samples from 11 out of 21 patients with primary vasculitis produced substantial up-regulation of ICAM-1 on HUVEC. Autoantibody-negative samples did not produce adhesion molecule up-regulation. Up-regulation of adhesion molecules on HUVEC was observed with samples positive for ANA, a phenomenon not previously reported. Preincubation of the sera with purified antigens recognized by ANCA failed to block this activation. In addition, MoAbs to ANCA antigens were ineffective at inducing ICAM-1 up-regulation, suggesting that activation is independent of the molecular specificity of the antibody. This capacity of ANCA- and ANA-positive sera to up-regulate adhesion molecules on endothelial cells may be a factor in the vessel wall inflammation seen in ANCA-associated vasculitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluation of pain in neonates is difficult due to their limited means of communication. The aim was to determine whether behavioural reactions of cry and facial activity provoked by an invasive procedure could be discriminated from responses to non-invasive tactile events. Thirty-six healthy full-term infants (mean age 2.2 h) received 3 procedures in counterbalanced order: intramuscular injection, application of triple dye to the umbilical stub, and rubbing thigh with alcohol. Significant effects of procedure were found for total face activity and latency to face movement. A cluster of facial actions comprised of brow bulging, eyes squeezed shut, deepening of the naso-labial furrow and open mouth was associated most frequently with the invasive procedure. Comparisons between the 2 non-invasive procedures showed more facial activity to thigh swabbing and least to application of triple dye to the umbilical cord. Acoustic analysis of cry showed statistically significant differences across procedures only for latency to cry and cry duration for the group as a whole. However, babies who cried to two procedures showed higher pitch and greater intensity to the injection. There were no significant differences in melody, dysphonation, or jitter. Methodological difficulties for investigators in this area were examined, including criteria for the selection of cries for analysis, and the logical and statistical challenges of contrasting cries induced by different conditions when some babies do not always cry. It was concluded that facial expression, in combination with short latency to onset of cry and long duration of first cry cycle typifies reaction to acute invasive procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function.

Objective: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism.

Methods and Results: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of ß-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G1 phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other ß-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased ß-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced ß-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to ß-catenin and forms a complex with 14-3-3 e, ?, and ? proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLC?-IP3K (phospholipase C?–inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with ß-catenin, disrupting the complex and releasing ß-catenin to translocate into the nucleus.

Conclusions: These findings demonstrate that HDAC7 interacts with ß-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-box binding protein 1 (XBP1) is a key signal transducer in endoplasmic reticulum stress response, and its potential role in the atherosclerosis development is unknown. This study aims to explore the impact of XBP1 on maintaining endothelial integrity related to atherosclerosis and to delineate the underlying mechanism. We found that XBP1 was highly expressed at branch points and areas of atherosclerotic lesions in the arteries of ApoE(-/-) mice, which was related to the severity of lesion development. In vitro study using human umbilical vein endothelial cells (HUVECs) indicated that disturbed flow increased the activation of XBP1 expression and splicing. Overexpression of spliced XBP1 induced apoptosis of HUVECs and endothelial loss from blood vessels during ex vivo cultures because of caspase activation and down-regulation of VE-cadherin resulting from transcriptional suppression and matrix metalloproteinase-mediated degradation. Reconstitution of VE-cadherin by Ad-VEcad significantly increased Ad-XBP1s-infected HUVEC survival. Importantly, Ad-XBP1s gene transfer to the vessel wall of ApoE(-/-) mice resulted in development of atherosclerotic lesions after aorta isografting. These results indicate that XBP1 plays an important role in maintaining endothelial integrity and atherosclerosis development, which provides a potential therapeutic target to intervene in atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To examine the validity of a growth trajectory method to discriminate between pathologically and constitutionally undergrown fetuses using repeated measures of estimated fetal weight.

METHODS: In a prospective, observational, multicenter study in Ireland, 1,116 women with a growth-restricted fetus diagnosed participated with the objective of evaluating ultrasound findings as predictors of pediatric morbidity and mortality. Fetal growth trajectories were based on estimated fetal weight.

RESULTS: Between 22 weeks of gestation and term, two fetal growth trajectories were identified: normal (96.7%) and pathologic (3.3%). Compared with the normal trajectory, the pathologic trajectory was associated with an increased risk for preeclampsia (odds ratio [OR] 8.1, 95% confidence interval [CI] 2.6–23.4), increased umbilical artery resistance at 30 weeks of gestation (OR 12.6, 95% CI 4.6–34.1) or 34 weeks of gestation (OR 28.0, 95% CI 8.9–87.7), reduced middle cerebral artery resistance at 30 weeks of gestation (OR 0.33, 95% CI 0.12–0.96) or 34 weeks of gestation (OR 0.14, 95% CI 0.03–0.74), lower gestational age at delivery (mean 32.02 weeks of gestation compared with 38.02 weeks of gestation; P<.001), and higher perinatal complications (OR 21.5, 95% CI 10.5–44.2). In addition, 89.2% of newborns with pathologic fetal growth were admitted to neonatal intensive care units compared with 25.9% of those with normal growth.

CONCLUSIONS: Fetal growth trajectory analysis reliably differentiated fetuses with a pathologic growth pattern among a group of women with growth-restricted fetuses. With further development, this approach could provide clarity to how we define, identify, and ultimately manage pathologic fetal growth.

LEVEL OF EVIDENCE: II

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Some members of a novel series of pyrrolo-1,5-benzoxazepines (PBOXs) are microtubule-targeting agents capable of inducing apoptosis in a variety of human cancerous cells, hence, they are currently being developed as potential anti-cancer agents. The purpose of this study was to first characterise the activities of a novel PBOX analogue, PBOX-16 and then investigate the anti-angiogenic potential of both PBOX-16 and its prototype PBOX-6.

METHODS: The effects of PBOX-6 and -16 on cancerous cells (chronic myeloid leukaemia K562 cells and ovarian carcinoma A2780 cells) and primary cultured human umbilical vein endothelial cells (HUVECs) were examined by assessing cell proliferation, microtubular organisation, DNA analysis of cell cycle progression and caspase-3/7 activity. Their anti-angiogenic properties were then investigated by examining their ability to interfere with HUVEC differentiation into capillary-like structures and vascular endothelial growth factor (VEGF)-stimulated HUVEC migration.

RESULTS: PBOX-6 and -16 inhibited proliferation of K562, A2780 and HUVEC cells in a concentration-dependent manner. PBOX-16, confirmed as a novel depolymerising agent, was approximately tenfold more potent than PBOX-6. Inhibition of cell proliferation was mediated by G(2)/M arrest followed by varying degrees of apoptosis depending on the cell type; endothelial cells underwent less apoptosis than either of the cancer cell lines. In addition to the antitumourigenic properties, we also describe a novel antiangiogenic function for PBOXs: treatment with PBOXs inhibited the spontaneous differentiation of HUVECs into capillary-like structures when grown on a basement membrane matrix preparation (Matrigel™) and also significantly reduced VEGF-stimulated HUVEC migration.

CONCLUSION: Dual targeting of both the tumour cells and the host endothelial cells by PBOX compounds might enhance the anti-cancer efficacy of these drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Emerging evidence supports a key role for NADPH oxidases in underlying angiogenic processes of these and other endothelial cells. Aims. To study the influence of Nox NADPH oxidases on the pro-angiogenic function of ECFCs. Methods. Human ECFCs isolated from umbilical cord blood were treated with pro-oxidant PMA and assessed in vitro, both under basal conditions and after siRNA knockdown of Nox4, a key endothelial NADPH oxidase isoform, alongside primary mature human aortic endothelial cells (HAoECs) for comparison, using an established scratch-wound assay as the functional end-point. Results. PMA (500nM for 8h) increased cell migration (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05) in a superoxide-dependent manner, as indicated by attenuation of this effect in the presence of PEG-SOD. Although HAoEC migration in response to PMA also tended to increase, this did not reach statistical significance. Notably, cell migration at 16h was reduced by Nox4 knockdown in ECFCs (control siRNA 53.4±3.5, Nox4 siRNA 35.1±4.9% closure; n=3, P<0.05), but not in HAoECs, whilst the pro-migratory effect of PMA in ECFCs was potentiated after Nox4 knockdown (control siRNA 53.4±3.5, +PMA 61.5±3.2% closure; n=3, P=NS; Nox4 siRNA 35.1±4.9, +PMA 53.0±4.9% closure; n=3, P<0.05). Conclusion. ECFC migration is enhanced by low concentrations of superoxide, to a greater extent compared to mature endothelial cells, and appears to be at least partly dependent upon NADPH oxidase, including a specific role for Nox4. Although, the precise contribution of endothelial Nox NADPH oxidases isoforms remains to be determined, it is clear that these findings may have significant implications for potential ECFC-based therapies for ischaemic disease, which is associated with an oxidative microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Whilst increasing evidence supports a key role for reactive oxygen species (ROS), specifically those derived from Nox NADPH oxidases, in the underlying angiogenic processes of these and other endothelial cells, such studies investigating the role of redox signalling may be hampered by the standard inclusion of antioxidant agents in endothelial cell media, such as phenol red. Aims. To study the effects of antioxidants present in culture media on pro-angiogenic function of ECFCs in vitro. Methods. Human ECFCs isolated from umbilical cord blood were maintained in media with and without antioxidant components (EGM2 and phenol red-free DMEM, respectively) prior to treatment with pro-oxidant PMA and assessment of their in vitro migratory capacity using a scratch-wound assay to measure pro-angiogenic activity. Results. Our previous work in our group indicated that PMA (500nM) increased ECFC migration in a both a superoxide and NADPH oxidase-dependent manner (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05), as indicated by attenuation with PEG-SOD and VAS2870. However, inconsistencies in the data generated under varying experimental conditions led us to hypothesise that antioxidant agents in the standard ECFC media may be influencing these effects. Indeed, a direct comparison of cell migration between ECFCs incubated in EGM2 DMEM demonstrated a clear trend towards higher migration in the latter (EGM2 9.0±4.5, DMEM 22.7±6.4%; n=3, P=NS). Similar to our previous EGM2 studies, cell migration was potentiated by PMA (control 11.6±1.6, PMA 25.1±2.8%; n=3, P<0.05), but at a lower dose (100nM), which is consistent with a reduction in media antioxidants. Notably, this response was attenuated by VAS2870 (PMA 37.6±7.3, PMA+VAS2870 10.3±2.9%; n=6, P<0.05), underlining a likely role for Nox NADPH oxidases. Conclusion. Taken together, these data indicate that ECFC migration is sensitive to different endothelial cell growth media, which appears to be dependent upon their antioxidant content. Although further experiments, such as quantification of cellular superoxide generation by dihydroethidium fluorescence may be required to confirm a specific role for antioxidants, such blunting of ROS signalling in vitro is clearly an important consideration which may significantly impact upon data interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de dout., Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2005

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os sinais de fluxo sanguíneo são sinais aleatórios que, além de variarem de individuo para individuo, variam também consoante o ciclo cardíaco em análise. Sendo o diagnóstico de patologias cardiovasculares fortemente baseado em sinais de ultrassom Doppler representados em forma de espectrograma, e tendo em consideração que o ruído do tipo speckle é parte integrante dos sinais ultrassónicos, torna-se vital a pesquisa de métodos de eliminação desse tipo de ruído e de caracterização precisa dos parâmetros desses sinais biomédicos por forma a melhorar a qualidade do diagnóstico clínico. Com esta tese pretende-se desenvolver uma ferramenta computacional que possibilite a extração automática dos parâmetros pico sistólico, fim de diástole e de outros eventos clinicamente relevantes de sinais Doppler de fluxo sanguíneo, com especial atenção ao sinal proveniente da artéria carótida. Esta investigação vem na continuidade de um projeto realizado anteriormente no Grupo de Processamento de Sinal Biomédico da Universidade do Algarve, no qual foi desenvolvido um sistema de redução de ruído de espectrogramas Doppler. Este sistema de remoção de ruído será aqui aplicado e melhorado. Para a deteção e extração automática de parâmetros clínicos, foi desenvolvido um algoritmo que recebe um sinal de Doppler e que tem como saída o espectrograma livre de ruído e os valores dos parâmetros clínicos calculados. O algoritmo desenvolvido está dividido em três partes principais. A primeira, consiste na transformada do sinal para os domínios tempo-frequência para a criação do espectrograma e na aplicação de uma metodologia de remoção do ruído do tipo speckle do espectrograma. A fase seguinte é a criação de um sinal bidimensional a partir do espectrograma, o qual é criado para possibilitar a sua caraterização. Por último, desenvolveu-se uma fase dedicada à caracterização do sinal, tendo como principais funções a deteção dos eventos clínicos de pico sistólico, fim de diástole, índice de pulsação, índice de resistência e ratio sístole-diástole. A refinação de atuação de cada uma das três partes mencionadas pode ser ajustada pelo utilizador, tendo para o efeito sido desenvolvido uma interface gráfica na qual a interação do utilizador com o programa global é facilitada. Versatilidade e eficácia do algoritmo desenvolvido foram demonstradas pelos resultados obtidos com três sinais de Doppler de diferentes origens: um de origem clínica, um sinal de fluxo em artéria carótida simulado experimentalmente recorrendo a phantoms, e um sinal de fluxo simulado computacionalmente. Para cada um destes sinais são apresentados os valores das variáveis considerados preferenciais para o ajuste ao respetivo sinal e os respetivos espetros de ruído reduzido. Os resultados da extração automática dos parâmetros clínicos dos três sinais, comprovou a utilidade clínica do algoritmo desenvolvido.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Belas-Artes (Ciências da Arte), Universidade de Lisboa, Faculdade de Belas-Artes, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores