969 resultados para Archaean seafloor
Resumo:
Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position
Resumo:
Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios
Resumo:
The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.
Resumo:
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Resumo:
A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean ""in situ"" direction for the SOC is Dec: 286.9 degrees, Inc: -58.5 degrees, alpha-95: 6.9 degrees, N: 11 (sites). Rock magnetic properties, petrography and whole-rock K-Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous. The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50 degrees is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30 degrees westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The State of Paraíba is one of the most dynamic states of Brazil, strategically located in the northeast, is notable for the excellent potential for integration of different transportation modes forming the states of Rio Grande do Norte, Pernambuco and Alagoas. The dynamic that occurs with port activity causes changes in the space where it is installed. And the elements of this space are always more than suffering direct or indirect influences as the flow in the port is expanded. Therefore, this region became subject to the accidental spillage of oil, because it presents a heavy traffic of ships of various sizes that can run aground or collide with oil causing accidental events. The study of geomorphological and sedimentological compositions of seafloor becomes important as more is known about the relationships between these parameters and associated fauna, and can identify their preferred habitats. The database background, acoustically collected along the proposed study area, is a wealth of information, which were duly examined, cataloged and made available. Such information can serve as an important tool, providing a geomorphological survey of the sedimentary area studied, and come to subsidize, in a flexible, future decision making. With the study area Port of Cabedelo, Paraíba - Brazil, this research aimed to evaluate the influence of the tidal surface and background in modeling the seabed, including the acquisition of information about the location of submerged rocky bodies and the depth of these bodies may turn out to be natural traps for the trapping of oil in case of leaks, and obtain the relationship between types of bed and the hydrodynamic conditions present in the region. In this context, for this study were collected bathymetric data (depth) and physical oceanographic (height of water column, water temperature, intensity and direction of currents, waves and turbidity), meteorological (rainfall, air temperature, humidity, winds and barometric pressure) of the access channel to the Port of Cabedelo / PB and its basin evolution (where the cruise ships dock), and includes tools of remote sensing (Landsat 7 ETM +, 2001), so that images and the results are integrated into Geographic Information Systems and used in the elaboration of measures aimed at environmental protection areas under the influence of this scale facilities, serving as a grant to prepare a contingency plan in case of oil spills in the region. The main findings highlight the techniques of using hydroacoustic data acquisition together bathymetric surveys of high and low frequency. From there, five were prepared in bathymetric pattern of Directorate of Hydrography and Navigation - DHN, with the depth in meters, on a scale of 1:2500 (Channel and Basin Evolution of Access to Port of Cabedelo), where there is a large extent possible beachrocks that hinder the movement of vessels in the port area, which can cause collisions, running aground and leaking oil. From the scatter diagram of the vectors of currents, it can be seen as the tidal stream and undergoes a channeling effect caused by the bidirectional effect of the tide (ebb and flood) in the basin of the Port of Cabedelo evolution in NW-direction SE and the highest speed of the currents occurs at low tide. The characterization weather for the period from 28/02 to 04/07/2010 values was within the expected average for the region of study. The multidisciplinary integration of products (digital maps and remote sensing images), proved to be efficient for the characterization of underwater geomorphological study area, reaching the aim to discriminate and enhance submerged structures, previously not visible in the images
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines
Resumo:
This thesis presents the results of application of SWAN Simulating WAves Nearshore numerical model, OF third generation, which simulates the propagation and dissipation of energy from sea waves, on the north continental shelf at Rio Grande do Norte, to determine the wave climate, calibrate and validate the model, and assess their potential and limitations for the region of interest. After validation of the wave climate, the results were integrated with information from the submarine relief, and plant morphology of beaches and barrier islands systems. On the second phase, the objective was to analyze the evolution of the wave and its interaction with the shallow seabed, from three transverse profiles orientation from N to S, distributed according to the parallel longitudinal, X = 774000-W, 783000-W e 800000-W. Subsequently, it was were extracted the values of directional waves and winds through all the months between november 2010 to november 2012, to analyze the impact of these forces on the movement area, and then understand the behavior of the morphological variations according to temporal year variability. Based on the results of modeling and its integration with correlated data, and planimetric variations of Soledade and Minhoto beach systems and Ponta do Tubarão and Barra do Fernandes barrier islands systems, it was obtained the following conclusions: SWAN could reproduce and determine the wave climate on the north continental shelf at RN, the results show a similar trend for the measurements of temporal variations of significant height (HS, m) and the mean wave period (Tmed, s); however, the results of parametric statistics were low for the estimates of the maximum values in most of the analyzed periods compared data of PT 1 and PT 2 (measurement points), with alternation of significant wave heights, at times overrated with occasional overlap of swell episodes. By analyzing the spatial distribution of the wave climate and its interaction with the underwater compartmentalization, it was concluded that there is interaction of wave propagation with the seafloor, showing change in significant heights whenever it interacts with the seafloor features (beachrocks, symmetric and asymmetric longitudinal dunes, paleochannel, among others) in the regions of outer, middle and inner shelf. And finally, it is concluded that the study of the stability areas allows identifications of the most unstable regions, confirming that the greatest range of variation indicates greater instability and consequent sensitivity to hydrodynamic processes operating in the coastal region, with positive or negative variation, especially at Ponta do Tubarão and Barra do Fernandes barrier islands systems, where they are more susceptible to waves impacts, as evidenced in retreat of the shoreline
Resumo:
The area studied is located on the north-easternmost portion of the Borborema Province, on the so-called São José de Campestre Massif, States of RN and PB, Northeast Brazil. Field relations and petrographic, geochemical and isotope data permitted the separation of five suites of plutonic rocks: alkali-feldspar granite (Caxexa Pluton), which constitutes the main subject of this dissertation, amphibole-biotite granite (Cabeçudo Pluton), biotite microgranite, gabbronorite to monzonite (Basic to Intermediate Suite) and aluminous granitoid. The Caxexa Pluton is laterally associated to the Remígio Pocinhos Shear Zone, with its emplacement along the mylonitic contact between the gneissic basement and the micashists. This pluton corresponds to a syntectonic intrusion elongated in the N-S direction, with about 50 km2 of outcropping surface. It is composed exclusively of alkali-feldspar granites, having clinopyroxene (aegirine-augite and hedenbergite), andradite-rich garnet, sphene and magnetite. It is classified geochemically as high silica rocks (>70 % wt), metaluminous to slightly peraluminous (normative corindon < 1%), with high total alkalis (>10% wt), Sr, iron number (#Fe=90-98) and agpaitic index (0.86-1.00), and positive europium anomaly. The Cabeçudo Pluton is composed of porphyritic rocks, commonly containing basic to intermediate magmatic enclaves often with mingling and mixing textures. Petrographically, it presents k-feldspar and plagioclase phenocrysts as the essential minerals, besides the accessories amphibole, biotite, sphene and magnetite. It is metaluminous and shows characteristics transitional between the calc-alkaline and alkaline series (or monzonitic subalkaline). Its REE content is greater than those ones of the Caxexa Pluton and biotite microgranite, and all spectra have negative europium anomalies. The biotite microgranites occur mainly on the central and eastern portion of the mapped area, as dykes and sheets with decimetric thickness, hosted principally in orthogneisses and micashists. Their field relationships as regards the Caxexa and Cabeçudo plutons suggested that they are late-tectonic intrusions. They are typically biotite granites, having also sphene, amphibole, allanite, opaques and zircon in the accessory assemblage. Geochemically they can be distinguished from the porphyritic types because the biotite microgranites are more evolved, peraluminous, and have more fractionated REE spectra. The Basic to Intermediate rocks form a volumetrically expressive elliptical, kilometric scale body on the Southeast, as well as sheets in micashists. They are classified as gabbronorites to monzonites, with the two pyroxenes and biotite, besides subordinated amounts of amphibole, sphene, ilmenite and allanite. These rocks do not show a well-defined geochemical trend, however they may possibly represent a monzonitic (shoshonitic) series. Their REE spectra have negative europium anomalies and REE contents greater than the other suites. The aluminous granitoids are volumetrically restricted, and have been observed in close association with migmatised micashists bordering the gabbronorite pluton. They are composed of almandine-rich garnet, andalusite, biotite and muscovite, and are akin to the peraluminous suites. Rb-Sr (whole rock) and Sm-Nd (whole-rock and mineral) isotopes furnished a minimum estimate of the crystallization (578±14 Ma) and the final resetting age of the Rb-Sr system (536±4 Ma) in the Caxexa Pluton. The aluminous granitoid has a Sm-Nd garnet age similar to that one of the Caxexa Pluton, that is 574±67 Ma. The strong interaction of shear bands and pegmatite dykes favoured the opening of the Rb-Sr system for the Caxexa Pluton and biotite microgranite. The amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer indicate minimum conditions of 560°C and 7 kbar for the Cabeçudo Pluton, 730°C and 6 kbar for the microgranite and 743°C and 5 kbar for the basic to intermediate suite. The Zr saturation geothermometer reveals temperatures of respectively 855°C, 812°C and 957°C for those suites, whereas the Caxexa Pluton shows temperatures of around 757°C. The Caxexa, Cabeçudo and microgranites suites crystallized under high fO2 (presence of magnetite). On the other hand, the occurrence of ilmenite suggests less oxidant conditions in the basic to intermediate suite. Field relations demonstrate the intrusive character of the granitoids into a tectonically relatively stable continental crust. This is corroborated by petrographic and geochemical data, which suggest a late- or post-collisional tectonic context. It follows that the generation and emplacement of those granitoid suites is related to the latest events of the Brasiliano orogeny. Finally, the relationships between eNd (600 Ma), TDM (Nd) and initial Sr isotope ratio (ISr) do not permit to define the precise sources of the granitoids. Nevertheless, trace element modelling and isotopic comparisons suggest the participation of the metasomatised mantle in the generation of these suites, probably modified by different degrees of crustal contamination. In this way, a metasomatised mantle would not be a particular characteristic of the Neoproterozoic lithosphere, but a remarkable feature of this portion of the Borborema Province since Archaean and Paleoproterozoic times.
Resumo:
This work presents the results of the first imaging of continental slope adjacent to Potiguar Basin, in the equatorial Brazilian margin (NE Brazil). Swath bathymetry provided a complete coverage of seafloor between the upper and middle slope (100-1,300 m). Fifteen submarine canyons were mapped. The shape of the slope reflects in distinct spatial distribution of the canyons. The western area displays convex profiles which implied a greater amount of incisions by canyons. Some of them have gradient walls higher than 35°. They were classified according to location and morphology. The canyons with heads indenting shelf edge, association with a incised valley and a large fluvial system, high sinuosities, V shape, terraces along margins, further erosive features such as landslide and gullies allow to deduce a sandy-gravelly sedimentation. These canyons are associated with deposition of submarine fan systems that have been considered permeable hydrocarbon reservoirs. The presence of gullies, furrows and dunes demonstrates the role of bottom currents in the shaping of the slope. The enlargement of canyons and the change in the course when they cross the border fault imply that tectonic has also influenced in the morphology of deep waters environments of Potiguar Basin. The current sedimentation of continental slope is considered mixed because the sediments are composed of siliciclastics and bioclasts. Predominant siliciclastics are calcite, dolomite, quartz, and clay minerals. The presence of stable minerals (zircon, tourmaline and rutile), and fragmented bioclasts implies the contributions of Rivers Açu and Apodi
Resumo:
Rhynchonelliform brachiopods were diverse and often dominant benthos of tropical seas in the Paleozoic. In contrast, they are believed to be rare in open habitats of modern oceans, especially at low latitudes. This study documents numerous occurrences of rhynchonelliform brachiopods on a modern tropical shelf, particularly in areas influenced by upwelling. Extensive sampling of the outer shelf and coastal bays of the Southeast Brazilian Bight revealed dense populations of terebratulid brachiopods (>10(3) individuals /m(2) of seafloor) between 24 and 26 S. on the outer shelf, brachiopods are more abundant than bivalves and gastropods combined. However, brachiopod diversity is low: only four species belonging to the genera Bouchardia, Terebratulina, Argyrotheca, and Platidia were identified among over 16000 examined specimens. Brachiopods occur preferentially on carbonate bottoms and include two substrate-related associations: Bouchardia (40-70% CaCO3, weight content) and Terebratulina-Argyrotheca (70-95% CaCO3). All four species display a broad bathymetric range that contrasts with a narrow depth tolerance postulated for many Paleozoic rhynchonelliforms. The most abundant populations occur in the depth range between 100 and 200 m, and coincide with zones of shelf-break upwelling, where relatively colder and nutrient-rich water masses of the South Atlantic Central Water are brought upward by cyclonic meanders of the South Brazil Current (a western boundary current that flows poleward along the coast of Brazil). This is consistent with previous biological and paleontological studies that suggest upwelling may play a role in sustaining brachiopod-dominated benthic associations. The presence of abundant brachiopods in the open habitats of the tropical shelf of the western South Atlantic contrasts with current understanding of their latitudinal distribution and points to major gaps in our knowledge of their present-day biogeography. The ecological importance of rhynchonelliform brachiopods in modern oceans and their role as producers of biogenic sedimentary particles may be underestimated.
Resumo:
A review is presented concerning Archaean granulites occurring in some old domains of the South American Platform, which was consolidated at the end of the Brazilian Cycle (900-500 Ma). The rocks occur in different geotectonic environments and show variable ages, structures and lithological associations. The most important complexes are the Atlantic Granulite Belt in the São Francisco Craton and the Goias Granulite Belt in the Central Goias Massif, both several hundred kilometres long. The former is composed of the Caraibas Complex, the Jequié Complex, the Salvador Complex and several minor granulite occurrences along the Brazilian coast in the States of Espírito Santo and Rio de Janeiro. The latter includes the large basic-ultrabasic complexes of Barro Alto, Tocantins and Canabrava. Both belts consist of massive or foliated rocks, banded or homogeneous and varying from acidic to ultrabasic in composition. They are the result of metamorphism affecting diversified supra- and infracrustal material. The Atlantic Granulite Belt lies between greenstone/granite terrains which show ovoid and boomerang-type dome structures. The contacts between both are either tectonic or transitional. Another occurrence of Archaean granulites comprises intercalations of palaeosomes and melanosomes within migmatites and anatectic rocks. These vary in size from small lenses to irregular complexes which may attain sizes of several hundred square kilometres. Apart from migmatites, they are associated with gneisses, schists and granitoid bodies. They are located in regions which underwent remobilization of varying intensity during the Middle and Late Precambrian. The rocks show polymetamorphism, K-feldspar blastesis, tectonic overprinting and isotopic rejuvenation. These granulites are in some cases very similar to those formed during the Middle Precambrian. In some places it is therefore quite difficult to distinguish between Early and Middle Precambrian granulites - the more so, since interpretations of radiometric age values are largely controversial. At present there is no evidence of granulitic rocks related to the Late Precambrian geotectonic cycles of Brazil. © 1979.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
This work aimed at describing the Neoproterozoic evolution of a Southern Brasília Fold Belt segment, in Tapira area (southwest of Minas Gerais state, Brazil), using detailed geologic mapping. This area, the Canastra Group type-area, has showed great tectonic and stratigraphic complexities unlike the simplicity suggested in previous works. From recognizing the main tectonic discontinuities, it was possible to subdivide the area into some domains. In the west domain, they were individualized in tectonic sheet I, marked by pelitic rocks and pelitic-graphite rocks with psammitic intercalations, and II, pelitic rocks with psammitic and mafic-ultramafic intercalations overlapped by gneisses. In the east domain, a group of three tectonic sheets was defined, in which, in the two lower tectonic sheets, pelitic and pelitic-graphite rocks with psammitic rock intercalations prevailed, which is different in metamorphic conditions. The lower tectonic sheet is marked by mineralogical associations with muscovite + chlorite + quartz ± graphite ± albite, without biotite; however, the superior one is with muscovite + quartz + garnet ± chlorite ± biotite ± chloritoid ± graphite ± albite. In the upper tectonic sheet, pelitic rocks with local contributions of psammitic and ultramafics rocks occur. In the south domain, psammitic rocks basically occur with contributions of pelitics and rudaceous rocks, where the preservation of textures and sedimentary structures is common. Rocks of the several domains are interpreted as part of a passive continental margin basin, located in the western margin of the São Francisco paleocontinent. Thus, the south domain rocks would represent the facies of proximal platform; rocks of the lower and middle tectonic sheets (east domain) and of the tectonic sheet I (west domain) are of facies distal platform; and the ones from the upper tectonic sheet (east domain) and tectonic sheet II (west domain) were acknowledged as deposited in an environment of continental shelf and/or oceanic seafoor.