846 resultados para Aluminum zinc magnesium copper alloy
Resumo:
MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.
Resumo:
All the exciting work on developing new and better alloys has led older alloys, such as AZ9l , being abandoned by researchers. lt is believed that the full potential of AZ9l in automotive design has not been realized. Whatever works have been carried out on AZ9lalloy to improve its mechanical properties are insufficient in terms of its potential usage in auto industries. Due to the fact that AZ91 offers high room temperature mechanical properties and good castability, still this alloy is a primary choice for the auto component manufactures. Small improvement in its creep properties will have a huge impact in the transportation industries. Hence, in the present work, “Influence of Si, Sb and Sr Additions on the Microstructure, Mechanical Properties and Corrosion Behavior of AZ91 Magnesium Alloy”, an attempt has been made to improve the creep properties of AZ9l alloy through minor alloying elemental additions and to understand its strengthening mechanisms. The effect of alloying additions on the ageing and tensile properties of AZ9l is also studied. In addition to that, role of various intermetallics formed due to the alloying additions on the corrosion properties of AZ9l alloy is investigated.
Resumo:
The research investigations on pollution, particularly in coastal/ estuarine environments are recent ones and started only in 1970s. Hence the informations available are fragmentary and scattered. They throw some light only on either the concentration of heavy metals in water or in sediment or in organisms. No concerted efforts have been made to consolidate and correlate the results between the environment and biota. Literature on the level of concentration of heavy metals in different tissues of organisms with regard to their availability in the living media, their ratio, their inter—relationship, tolerance limit of organisms, etc. are very few or rather nil. in view of the importance enumerated above, the candidate has selected the topic "Effects of some heavy metals copper, zinc and lead on certain tissues of E E (Hamilton and Buchanan) in different environments" for detailed studies and to understand systematically (i) the source of effluents and wastes, (ii) the concentration of heavy metals copper, zinc and lead in water, in sediments and in tissues of the test animal, (iii) their effects, (iv) capacity of tolerance and accumulation in different tissues of the animal, and (V) the "Bioaccumulation Factor", etc.
Resumo:
A soil (sandy loam) column leaching study aimed to determine the extent of mobility and co-mobility of Cu, Ni, Zn and dissolved organic matter (DOM) released from a surface-application (equivalent to 50 t ds ha(-1)) of anaerobically-digested sewage sludge. Leaching of DOM through It the soil column was found to be almost un-retarded. Decidedly similar behaviour was exhibited by Ni suggesting that it migrated as organic complexes. Whilst Cu was also found to be leached, significant retardation was evident. However, the importance of DOM in promoting the mobility of both Cu and Ni was evidenced by their lack of mobility when added to the soil column as inorganic forms. The presence of DOM did not prevent Zn from becoming completely adsorbed by the soil solid phase. In relation to WHO drinking water guidelines, only Ni concentrations showed potential environmental significance. due to the relatively poor retention of Ni by the sludge solid phase. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.
Resumo:
In the present work 2-formylpyridine-para-chloro-phenyl hydrazone (H2FopCIPh) and 2-formylpyridine-para-nitro-phenyl hydrazone (H2FopNO(2)Ph) were obtained, as well as their copper(II) and zinc(II) complexes [Cu(H2FopClPh)Cl(2)] (1), [Cu(2FopNO(2)Ph)Cl] (2), [Zn(H2FopClPh)Cl(2)] (3) and [Zn(H2FopNO(2)Ph)Cl(2)] (4). Upon re-crystallization in DMSO:acetone conversion of 2 into [Cu(2FopNO(2)Ph)Cl(DMSO)] (2a) and of 4 into [Zn(2FopNO(2)Ph)Cl(DMSO)] (4a) occurred. The crystal structures of 1, 2a, 3 and 4a were determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
2-Benzoylpyridine-methyl hydrazone (HBzMe) has been obtained as well as its copper(II) [Cu(HBzMe)Cl(2)] (1) and zinc(II) [Zn(HBzMe)Cl(2)] (2) complexes. Upon re-crystallization in 1 - 9 DMSO:acetone conversion of I into dimeric [Cu(BzMe)Cl](2) (1a) occurred. The crystal structures of HBzMe, 1, 1a, and 2 were determined. HBzMe adopts the ZE conformation in the solid. In all complexes the hydrazone adopts the E configuration to attach to the metal through the N(py)-N2-O chelating system. In 1 and 2 a neutral hydrazone coordinates to the metal center while in 1a deprotonation occurs with coordination of an anionic ligand. la presents a dimeric structure. having two copper(II) ions per asymmetric unit. Two chlorides are also present in the copper coordination sphere, which act as bridging ligands and connect the copper centers to each other. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this project forging of aluminum alloy Al 6026 T9 has been performed in the temperature range of 400 °C – 470 °C. The alloy which was in the shape of a cylindrical billet was formed in a press with the aim of analyzing the effect of different forging temperatures and required press load for optimal die filling. The component’s dimensions were later measured and compared to a reference piece. To ease the flow of material a lubricant was used between the billet and the die. This was demonstrated by compressing the billet with and without any lubricant.The performed experiments show that the lubricant reduces friction and makes it easier for the material to flow into the die. Higher billet temperature than 450 °C is deemed unnecessary as it does not give any significant improvement in filling the die. The experiments also conclude that a press load of at least 280 tons is required for these conditions.
Resumo:
Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The topography of fracture surface along stretch zone front for Al7050 is analyzed about its fractal behavior and compared against local distributions of microstructural parameters and stretch zone height, considered here as a toughness parameter. Major influence on microscale was presented by precipitation density. Larger grains should be significant on topographic behavior at macroscale, besides the local toughness measured along stretch zone. The large scattering of fractal measurements along specimen width should limit the validity of models relating fractal values and fracture toughness. It is proposed that models based on mixed fractals must also consider some dispersion parameter instead of mean fractal measurements due to the overall complexity of fracture relief formation. It is suggested that sampling for fractal measurement must be restricted to plane strain region along fracture surface, due to smaller scattering in this region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance have resulted in the search for possible alternatives. Zinc-nickel (Zn-Ni) alloys have received considerable interest recently, because these coatings show advantages such as a good resistance to white and red rust, high plating rates, and acceptance in the market. In this study, the effect of electroplated Zn-Ni coatings on AISI 4340 high-strength steel was analyzed for rotating bending fatigue strength, corrosion, and adhesion resistance. The compressive residual stress field was measured by x-ray diffraction prior to fatigue tests. Optical microscopy documented coating thickness, adhesion characteristics, and coverage extent for nearly all substrates. Fractured fatigue specimens were investigated using scanning electron microscopy (SEM). Three different Zn-Ni coating thicknesses were tested, and comparisons with the rotating bending fatigue data from electroplated Cd specimens were performed. Experimental results differentiated the effects of the various coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the influence of coating thickness on the fatigue strength.
Resumo:
This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest