918 resultados para Algebraic attack


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a continuous time target zone model of speculative attacks. Contrary to most of the literature that considers the certainty case, i.e., agents know for sure the Central Bank behavior in the future, we build uncertainty into the madel in two different ways. First, we consider the case in whicb the leveI of reserves at which the central bank lets the regime collapse is uncertain. Alternatively, we ana1ize the case in which, with some probability, the government may cbange its policy reducing the initially positive trend in domestic credito In both cases, contrary to the case of a fixed exchange rate regime, speculators face a cost of launching a tentative attack that may not succeed. Such cost induces a delay and may even prevent its occurrence. At the time of the tentative attack, the exchange rate moves either discretely up, if the attack succeeds, or down, if it fails. The remlts are consistent with the fact that, typically, an attack involves substantial profits and losses for the speculators. In particular, if agents believed that the government will control fiscal imbalances in the future, or alternatively, if they believe the trend in domestic credit to be temporary, the attack is postponed even in the presence of a signal of an imminent collapse. Finally, we aIso show that the timing of a speculative attack increases with the width of the target zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important challenge in the crime literature is to isolate causal effects of police on crime. Following a terrorist attack on the main Jewish center in the city of Buenos Aires, Argentina, in July 1994, all Jewish institutions (including schools, synagogues, and clubs) were given 24-hour police protection. Thus, this hideous event induced a geographical allocation of police forces that can be presumed to be exogenous in a crime regression. Using data on the location of car thefts before and after the terrorist attack, we find a large deterrent effect of observable police presence on crime. The effect is local, with little or no appreciable impact outside the narrow area in which the police are deployed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algebraic matrix hierarchy approach based on affine Lie sl(n) algebras leads to a variety of 1 + 1 soliton equations. By varying the rank of the underlying sl(n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy.The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time Bows which distinguishes them From the conventional structure of the Darboux-Backlund-Wronskian solutions of the constrained KP hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so-generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider certain quadrature rules of highest algebraic degree of precision that involve strong Stieltjes distributions (i.e., strong distributions on the positive real axis). The behavior of the parameters of these quadrature rules, when the distributions are strong c-inversive Stieltjes distributions, is given. A quadrature rule whose parameters have explicit expressions for their determination is presented. An application of this quadrature rule for the evaluation of a certain type of integrals is also given.