935 resultados para Algebra of differential operators
Resumo:
We completely determine the spectra of composition operators induced by linear fractional self-maps of the unit disc acting on weighted Dirichlet spaces; extending earlier results by Higdon [8] and answering the open questions in this context.
Resumo:
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.
Resumo:
Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.
Resumo:
We investigate the automatic regularity of continuous algebra homomorphisms between Riesz algebras of regular operators on Banach lattices.
Resumo:
We obtain invertibility and Fredholm criteria for the Wiener-Hopf plus Hankel operators acting between variable exponent Lebesgue spaces on the real line. Such characterizations are obtained via the so-called even asymmetric factorization which is applied to the Fourier symbols of the operators under study.
Resumo:
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds
Resumo:
We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
The model of the position-dependent noncommutativity in quantum mechanics is proposed. We start with given commutation relations between the operators of coordinates [(x) over cap (i), (x) over cap (j)] = omega(ij) ((x) over cap), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obeys the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativity.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
A mechanism for the kinetic instabilities observed in the galvanostatic electro-oxidation of methanol is suggested and a model developed. The model is investigated using stoichiometric network analysis as well as concepts from algebraic geometry (polynomial rings and ideal theory) revealing the occurrence of a Hopf and a saddle-node bifurcation. These analytical solutions are confirmed by numerical integration of the system of differential equations. (C) 2010 American Institute of Physics
Resumo:
This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result provides necessary and sufficient conditions for the existence of a local classical state space representation with input v. These conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of differential flatness of nonlinear systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new model for correlated electrons is presented which is integrable in one-dimension. The symmetry algebra of the model is the Lie superalgebra gl(2\1) which depends on a continuous free parameter. This symmetry algebra contains the eta pairing algebra as a subalgebra which is used to show that the model exhibits Off-Diagonal Long-Range Order in any number of dimensions.
Resumo:
The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The L-matrix in terms of fermion operators and the R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.
Resumo:
We have studied gene expression during ascidian embryonic development using the technique of differential display and isolated partial cDNA sequences of 12 genes. Developmental regulation of these genes has been confirmed by northern hybridization analysis. Further cDNA cloning and sequence analysis of an mRNA that is present during gastrulation, neurulation and tailbud formation reveals that it encodes a novel serine protease containing a single kringle motif and catalytic domain. The spatial expression of this gene, designated Hmserp1, is restricted to precursor cells of the epidermis. The structure and expression of Hmsery1 is discussed in relation to possible functions during development.