965 resultados para Algebra, Boolean
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
We show that by using second-order differential operators as a realization of the so(2,1) Lie algebra, we can extend the class of quasi-exactly-solvable potentials with dynamical symmetries. As an example, we dynamically generate a potential of tenth power, which has been treated in the literature using other approaches, and discuss its relation with other potentials of lowest orders. The question of solvability is also studied. © 1991 The American Physical Society.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.
Resumo:
Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.
Resumo:
Topics include: Rings, ideals, algebraic sets and affine varieties, modules, localizations, tensor products, intersection multiplicities, primary decomposition, the Nullstellensatz
Resumo:
Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.
Resumo:
Cutting and packing problems are found in numerous industries such as garment, wood and shipbuilding. The collision free region concept is presented, as it represents all the translations possible for an item to be inserted into a container with already placed items. The often adopted nofit polygon concept and its analogous concept inner fit polygon are used to determine the collision free region. Boolean operations involving nofit polygons and inner fit polygons are used to determine the collision free region. New robust non-regularized Boolean operations algorithm is proposed to determine the collision free region. The algorithm is capable of dealing with degenerated boundaries. This capability is important because degenerated boundaries often represent local optimal placements. A parallelized version of the algorithm is also proposed and tests are performed in order to determine the execution times of both the serial and parallel versions of the algorithm.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
The need for a convergence between semi-structured data management and Information Retrieval techniques is manifest to the scientific community. In order to fulfil this growing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of XQuery. However, the issue of query optimization requires the study of important properties like query equivalence and containment; to this aim, a formal representation of document and queries is needed. The goal of this thesis is to establish such formal background. We define a data model for XML documents and propose an algebra able to represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text expression can be translated into an algebraic expression and how an algebraic expression can be optimized.
Resumo:
[EN]A complex stochastic Boolean system (CSBS) is a complex system depending on an arbitrarily large number
Resumo:
[EN] This paper deals with the study of some new properties of the intrinsic order graph. The intrinsic order graph is the natural graphical representation of a complex stochastic Boolean system (CSBS). A CSBS is a system depending on an arbitrarily large number n of mutually independent random Boolean variables. The intrinsic order graph displays its 2n vertices (associated to the CSBS) from top to bottom, in decreasing order of their occurrence probabilities. New relations between the intrinsic ordering and the Hamming weight (i.e., the number of 1-bits in a binary n-tuple) are derived. Further, the distribution of the weights of the 2n nodes in the intrinsic order graph is analyzed…