999 resultados para ATMOSPHERIC MODELS
Resumo:
This thesis is actually the composition of two separate studies aimed at further understanding the role of incomplete combustion products on atmospheric chemistry. The first explores the sensitivity of black carbon (BC) forcing to aerosol vertical location since BC has an increased forcing per unit mass when it is located above reflective clouds. We used a column radiative transfer model to produce globally-averaged values of normalized direct radiative forcing (NDRF) for BC over and under different types of clouds. We developed a simple column-weighting scheme based on the mass fractions of BC that are over and under clouds in measured vertical profiles. The resulting NDRF is in good agreement with global 3-D model estimates, supporting the column-weighted model as a tool for exploring uncertainties due to diversity in vertical distribution. BC above low clouds accounts for about 20% of the global burden but 50% of the forcing. We estimate maximum-minimum spread in NDRF due to modeled profiles as about 40% and uncertainty as about 25%. Models overestimate BC in the upper troposphere compared with measurements; modeled NDRF might need to be reduced by about 15%. Redistributing BC within the lowest 4 km of the atmosphere affects modeled NDRF by only about 5% and cannot account for very high forcing estimates. The second study estimated global year 2000 carbon monoxide (CO) emissions using a traditional bottom-up inventory. We applied literature-derived emission factors to a variety of fuel and technology combinations. Combining these with regional fuel use and production data we produced CO emissions estimates that were separable by sector, fuel type, technology, and region. We estimated year 2000 stationary source emissions of 685.9 Tg/yr and 885 Tg/yr if we included adopted mobile sources from EDGAR v3.2FT2000. Open/biomass burning contributed most significantly to global CO burden, while the residential sector, primarily in Asia and Africa, were the largest contributors with respect to contained combustion sources. Industry production in Asia, including brick, cement, iron and steel-making, also contributed significantly to CO emissions. Our estimates of biofuel emissions are lower than most previously published bottom-up estimates while our other fuel emissions are generally in good agreement. Our values are also universally lower than recently estimated CO emissions from models using top-down methods.
Resumo:
International audience
Resumo:
We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
This thesis is focused on improving the calibration accuracy of sub-millimeter astronomical observations. The wavelength range covered by observational radio astronomy has been extended to sub-millimeter and far infrared with the advancement of receiver technology in recent years. Sub-millimeter observations carried out with airborne and ground-based telescopes typically suffer from 10% to 90% attenuation of the astronomical source signals by the terrestrial atmosphere. The amount of attenuation can be derived from the measured brightness of the atmospheric emission. In order to do this, the knowledge of the atmospheric temperature and chemical composition, as well as the frequency-dependent optical depth at each place along the line of sight is required. The altitude-dependent air temperature and composition are estimated using a parametrized static atmospheric model, which is described in Chapter 2, because direct measurements are technically and financially infeasible. The frequency dependent optical depth of the atmosphere is computed with a radiative transfer model based on the theories of quantum mechanics and, in addition, some empirical formulae. The choice, application, and improvement of third party radiative transfer models are discussed in Chapter 3. The application of the calibration procedure, which is described in Chapter 4, to the astronomical data observed with the SubMillimeter Array Receiver for Two Frequencies (SMART), and the German REceiver for Astronomy at Terahertz Frequencies (GREAT), is presented in Chapters 5 and 6. The brightnesses of atmospheric emission were fitted consistently to the simultaneous multi-band observation data from GREAT at 1.2 ∼ 1.4 and 1.8 ∼ 1.9 THz with a single set of parameters of the static atmospheric model. On the other hand, the cause of the inconsistency between the model parameters fitted from the 490 and 810 GHz data of SMART is found to be the lack of calibration of the effective cold load temperature. Besides the correctness of atmospheric modeling, the stability of the receiver is also important to achieving optimal calibration accuracy. The stabilities of SMART and GREAT are analyzed with a special calibration procedure, namely the “load calibration". The effects of the drift and fluctuation of the receiver gain and noise temperature on calibration accuracy are discussed in Chapters 5 and 6. Alternative observing strategies are proposed to combat receiver instability. The methods and conclusions presented in this thesis are applicable to the atmospheric calibration of sub-millimeter astronomical observations up to at least 4.7 THz (the H channel frequency of GREAT) for observations carried out from ∼ 4 to 14 km altitude. The procedures for receiver gain calibration and stability test are applicable to other instruments using the same calibration approach as that for SMART and GREAT. The structure of the high performance, modular, and extensible calibration program used and further developed for this thesis work is presented in the Appendix C.
Resumo:
This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
The accurate representation of the Earth Radiation Budget by General Circulation Models (GCMs) is a fundamental requirement to provide reliable historical and future climate simulations. In this study, we found reasonable agreement between the integrated energy fluxes at the top of the atmosphere simulated by 34 state-of-the-art climate models and the observations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a global scale, but large regional biases have been detected throughout the globe. Furthermore, we highlighted that a good agreement between simulated and observed integrated Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this and to understand the causes of these biases, we compared the observed Earth emission spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric fields provided by the EC-Earth GCM. To this purpose, the fast σ-IASI radiative transfer model was used, after its validation and implementation in EC-Earth. From the comparison between observed and simulated spectral radiances, a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere, as well as a dry bias of the water vapor concentration in the upper troposphere, have been identified in the EC-Earth climate model. The analysis has been performed in clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose impact on the radiation represents the greatest source of uncertainty in climate models, has also been proven. Finally, the analysis of simulated and observed OLR trends indicated good agreement and provided detailed information on the spectral fingerprints of the evolution of the main climate variables.
Resumo:
We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.
Resumo:
The main objective of this work was to evaluate the linear regression between spectral response and soybean yield in regional scale. In this study were monitored 36 municipalities from the west region of the states of Parana using five images of Landsat 5/TM during 2004/05 season. The spectral response was converted in physical values, apparent and surface reflectances, by radiometric transformation and atmospheric corrections and both used to calculate NDVI and GVI vegetation indices. Those ones were compared by multiple and simple regression with government official yield values (IBGE). Diagnostic processing method to identify influents values or collinearity was applied to the data too. The results showed that the mean surface reflectance value from all images was more correlated with yield than individual dates. Further, the multiple regressions using all dates and both vegetation indices gave better results than simple regression.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física