987 resultados para AC magnetic fields
Resumo:
The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^
Resumo:
In this thesis, the origin of large-scale structures in hot star winds, believed to be responsible for the presence of discrete absorption components (DACs) in the absorption troughs of ultraviolet resonance lines, is constrained using both observations and numerical simulations. These structures are understood as arising from bright regions on the stellar surface, although their physical cause remains unknown. First, we use high quality circular spectropolarimetric observations of 13 well-studied OB stars to evaluate the potential role of dipolar magnetic fields in producing DACs. We perform longitudinal field measurements and place limits on the field strength using Bayesian inference, assuming that it is dipolar. No magnetic field was detected within this sample. The derived constraints statistically refute any significant dynamical influence from a magnetic dipole on the wind for all of these stars, ruling out such fields as a cause for DACs. Second, we perform numerical simulations using bright spots constrained by broadband optical photometric observations. We calculate hydrodynamical wind models using three sets of spot sizes and strengths. Co-rotating interaction regions are yielded in each model, and radiative transfer shows that the properties of the variations in the UV resonance lines synthesized from these models are consistent with those found in observed UV spectra, establishing the first consistent link between UV spectroscopic line profile variability and photometric variations and thus supporting the bright spot paradigm (BSP). Finally, we develop and apply a phenomenological model to quantify the measurable effects co-rotating bright spots would have on broadband optical photometry and on the profiles of photopheric lines in optical spectra. This model can be used to evaluate the existence of these spots, and, in the event of their detection, characterize them. Furthermore, a tentative spot evolution model is presented. A preliminary analysis of its output, compared to the observed photometric variations of xi Persei, suggests the possible existence of “active longitudes” on the surface of this star. Future work will expand the range of observational diagnostics that can be interpreted within the BSP, and link phenomenology (bright spots) to physical processes (magnetic spots or non-radial pulsations).
Resumo:
How do the magnetic fields of massive stars evolve over time? Are their gyrochronological ages consistent with ages inferred from evolutionary tracks? Why do most stars predicted to host Centrifugal Magnetospheres (CMs) display no H$\alpha$ emission? Does plasma escape from CMs via centrifugal breakout events, or by a steady-state leakage mechanism? This thesis investigates these questions via a population study with a sample of 51 magnetic early B-type stars. The longitudinal magnetic field \bz~was measured from Least Squares Deconvolution profiles extracted from high-resolution spectropolarimetric data. New rotational periods $P_{\rm rot}$ were determined for 15 stars from \bz, leaving only 3 stars for which $P_{\rm rot}$ is unknown. Projected rotational velocities \vsini~were measured from multiple spectral lines. Effective temperatures and surface gravities were measured via ionization balances and line profile fitting of H Balmer lines. Fundamental physical parameters, \bz, \vsini, and $P_{\rm rot}$ were then used to determine radii, masses, ages, dipole oblique rotator model, stellar wind, magnetospheric, and spindown parameters using a Monte Carlo approach that self-consistently calculates all parameters while accounting for all available constraints on stellar properties. Dipole magnetic field strengths $B_{\rm d}$ follow a log-normal distribution similar to that of Ap stars, and decline over time in a fashion consistent with the expected conservation of fossil magnetic flux. $P_{\rm rot}$ increases with fractional main sequence age, mass, and $B_{\rm d}$, as expected from magnetospheric braking. However, comparison of evolutionary track ages to maximum spindown ages $t_{\rm S,max}$ shows that initial rotation fractions may be far below critical for stars with $M_*>10 M_\odot$. Computing $t_{\rm S,max}$ with different mass-loss prescriptions indicates that the mass-loss rates of B-type stars are likely much lower than expected from extrapolation from O-type stars. Stars with H$\alpha$ in emission and absorption occupy distinct regions in the updated rotation-magnetic confinement diagram: H$\alpha$-bright stars are found to be younger, more rapidly rotating, and more strongly magnetized than the general population. Emission strength is sensitive both to the volume of the CM and to the mass-loss rate, favouring leakage over centrifugal breakout.
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H-alpha line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as"power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can strongly influence the power-maps. The short and finite lifetime of these events strongly affects all powermaps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously, can have a dominant effect on the formation ofthe power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect in the power suppression around 3 minutes and wave interaction may play a key role here. Our high cadence observations reveal that flows, waves and shocks manifest in presence of magnetic fields to form a non-linear magnetohydrodynamic system.
Resumo:
One of the core tasks of the virtual-manufacturing environment is to characterise the transformation of the state of material during each of the unit processes. This transformation in shape, material properties, etc. can only be reliably achieved through the use of models in a simulation context. Unfortunately, many manufacturing processes involve the material being treated in both the liquid and solid state, the trans-formation of which may be achieved by heat transfer and/or electro-magnetic fields. The computational modelling of such processes, involving the interactions amongst various interacting phenomena, is a consider-able challenge. However, it must be addressed effectively if Virtual Manufacturing Environments are to become a reality! This contribution focuses upon one attempt to develop such a multi-physics computational toolkit. The approach uses a single discretisation procedure and provides for direct interaction amongst the component phenomena. The need to exploit parallel high performance hardware is addressed so that simulation elapsed times can be brought within the realms of practicality. Examples of Multiphysics modelling in relation to shape casting, and solder joint formation reinforce the motivation for this work.
Resumo:
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 - 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.
Resumo:
This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.
Resumo:
In recent years, higher cadence, higher resolution observations have revealed the quiet-Sun photosphere to be complex and rapidly evolving. Since magnetic fields anchored in the photosphere extend up into the solar corona, it is expected that the small-scale coronal magnetic field exhibits similar complexity. For the first time, the quiet-Sun coronal magnetic field is continuously evolved through a series of non-potential, quasi-static equilibria, deduced from magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, where the photospheric boundary condition which drives the coronal evolution exactly reproduces the observed magnetograms. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. We find that the free magnetic energy built up and stored within the field is sufficient to explain small-scale, impulsive events such as nanoflares. On comparing with coronal images of the same region, the energy storage and dissipation visually reproduces many of the observed features. The results indicate that the complex small-scale magnetic evolution of a large number of magnetic features is a key element in explaining the nature of the solar corona.
Resumo:
An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.
Resumo:
We present a new model for the Sun's global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small- scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms, to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2:5 Rʘ, around 10 - 100 times less than that determined for typical HMI synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is presently observed, and hence a much higher cosmic ray flux at Earth.
Resumo:
Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.
Resumo:
In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone's magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.
Resumo:
Radio relics are one of the different types of diffuse radio sources present in a fraction of galaxy clusters. They are characterized by elongated arc-like shapes, with sizes that range between 0.5 and 2 Mpc, and highly polarized emission (up to ∼60%) at GHz frequencies The linearly polarized radiation of relics, moving through a magnetized plasma which is the ICM, is affected by the rotation of the linear polarization vector. This effect, known as “Faraday rotation”, can cause depolarization. The study of this effect allows us to constrain the magnetic field projected along the line of sight. The aim of this thesis work is to constrain the magnetic field intensity and distribution in the periphery of the cluster PSZ2 G096.88+24.18: this cluster hosts a pair of radio relics that can be used for polarization analysis. To analyse the polarization properties of the relics in PSZ2 G096.88+24.18 radio relics we used new Jansky Very Large Array (VLA) observations together with archival observations. The polarization study has been performed using the Rotation Measure Synthesis technique, which allows us to recover polarization, minimizing the bandwidth depolarization. Thanks to this technique, we recovered more polarization from the southern relic (with respect to provious works), We studied also the depolarization trend with the resolution for the southern relic, and found that the polarization fraction decreases with the beamsize. Finally, we have produced simulated magnetic fields models, varying the auto-correlation lengths of the magnetic field, in order to reproduce the observed depolarization trend in the southern relic. Comparing our observational results and model predictions, we were able to constrain the scales over which the turbulent magnetic field varies within the cluster. We conclude that the depolarization observed in the southern relic is likely due to external depolarization caused by the magnetized ICM distribution within the cluster.