988 resultados para 530


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence (PL) is used to study the interface properties of GaAs/AlGaAs quantum well (QW) heterostructures prepared by molecular beam epitaxy with growth interruption (GI). The discrete luminescence lines observed for the sample with GI are assigned to the splitting of the heavy-hole exciton associated with heterointerface islands with the lateral size greater than exciton diameter and mean height less than one monolayer, and the spectra have the Gaussian lineshapes. The results strongly support the microroughness model. We also study the temperature dependence of the exciton energies and find that excitons are localized at the interface roughness at low temperature even in the sample with GI. The lateral size of the microroughness of the GI sample is estimated to be less than 5 nm from the exciton localization energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

使用气相沉积SiO2和普通光刻以及湿法腐蚀方法,在c面蓝宝石上开出不同尺寸的正方形窗口,在窗口区域中露出衬底,然后使用氢化物气相外延(HVPE)方法选区外延GaN薄膜.采用光学显微镜、原子力显微镜(AFM)、扫描电子显微镜(SEM)、高分辨率双晶X射线衍射(DCXRD)和喇曼谱测试(Raman shift)对薄膜进行分析.结果表明,在c面蓝宝石衬底上独立的正方形窗口区域中外延生长的,厚度约20μm的GaN薄膜,当窗口面积为100μm×100μm时,GaN表面无裂纹;而当窗口面积为300μm×300μm和500μm×500μm时,GaN表面有裂纹.随着窗口面积的减小,GaN双晶衍射摇摆曲线的(0002)峰的半高宽(FwHM)减小,表明晶体的质量更好,最小的半高宽为530″,从正方形窗口区的角上到边缘再到中心,GaN的面内压应力逐渐减小,分析认为这与GaN横向外延区(ELO区)与SiO2掩膜之间的相互作用,以及窗口区到ELO区的线位错的90°扭转有关.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用超高真空化学气相淀积系统,以高纯Si_2H_6和GeH_4作为生长气源,用低温缓冲层技术在Si(001)衬底上成功生长出厚的纯Ge外延层.对Si衬底上外延的纯Ge层用反射式高能电子衍射仪、原子力显微镜、X射线双晶衍射曲线和Ra-man谱进行了表征.结果表明在Si基上生长的约550nm厚的Ge外延层,表面粗糙度小于1nm,XRD双晶衍射曲线和Ra-man谱Ge-Ge模半高宽分别为530″和5.5cm~(-1),具有良好的结晶质量.位错腐蚀结果显示线位错密度小于5×105cm~(-2).可用于制备Si基长波长集成光电探测器和Si基高速电子器件.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

爆轰驱动过程中产生的高温高压气流对铝质膜片、激波管壁产生烧蚀和冲刷作用,以致激波管壁、端盖上附有氧化铝等杂质,而高温下AlO自由基在气体分子的高速碰撞下被激发并产生强烈的辐射,从而干扰了高温气体辐射光谱的分析。用爆轰驱动加热技术将空气加热到4 000~7 000 K,利用多通道光学分析仪对AlO自由基辐射光谱进行分析,实验发现在460~530 nm波长范围内有多支辐射非常强烈的AlO自由基B2Σ+-X2Σ+(T00=20 689 cm-1)带系辐射谱带,且每支谱带都由多个带头组成,带头间隔约为2 nm,带头处于高频位置并向低频方向伸延。通过实验与理论计算相结合,重点分析了AlO自由基B2Σ+-X2Σ+带系辐射光谱的结构特征。AlO自由基C2Πr-X2Σ+(T00=33 047 cm-1)带系辐射光谱处于270~335 nm波长范围内,其辐射强度相对于B2Σ+-X2Σ+带系较弱,并且与OH基A2Σ+-X2Π(T00=32 682 cm-1)带系辐射光谱互相干扰而难以分辨,对该波段高温空气的辐射光谱分析产生不利的影响。