956 resultados para 3 alpha-hydroxyjolkinolide A
Resumo:
3-(2,3-Dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (DMPP) a potential second harmonic generating (SHG) has been synthesized and grown as a single crystal by the slow evaporation technique at ambient temperature. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. DMPP crystallizes with orthorhombic system with cell parameters a = 20.3106(8)angstrom, b = 4.9574(2)angstrom, c = 13.4863(5)angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees and space group Pca2(1). The crystals were characterized by FT-IR, thermal analysis, UV-vis-NIR spectroscopy and SHG measurements. Various functional groups present in DMPP were ascertained by FTIR analysis. DMPP is thermally stable up to 80 degrees C and optically transparent in the visible region. The crystal exhibits SHG efficiency comparable to that of KDP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The search for molecular markers which predict response to chemotherapy is an important aspect of current neuro-oncology research. MGMT promoter methylation is the only proved marker of glioblastoma. The purpose of this study was to assess the effect of topoisomerase expression on glioblastoma survival and study the mechanisms involved. The transcript levels of all isoforms of the topoisomerase family in all grades of diffuse astrocytoma were assessed. A prospective study of patients with glioblastoma treated by a uniform treatment procedure was performed with the objective of correlating outcome with gene expression. The ability of TOP2A enzyme to relax the super coiled plasmid DNA in the presence of temozolomide was evaluated to assess its effect on TOP2A. The temozolomide cyctotoxicity of TOP2A-silenced U251 cells was assessed. The transcript levels of TOP2A, TOP2B, and TOP3A are upregulated significantly in GBM in comparison with lower grades of astrocytoma and normal brain samples. mRNA levels of TOP2A correlated significantly with survival of the patients. Higher TOP2A transcript levels in GBM patients predicted better prognosis (P = 0.043; HR = 0.889). Interestingly, we noted that temozolomide inhibited TOP2A activity in in-vitro enzyme assays. We also noted that siRNA knock down of TOP2A rendered a glioma cell line resistant to temozolomide chemotherapy. We demonstrated for the first time that temozolomide is also a TOP2A inhibitor and established that TOP2A transcript levels determine the chemosensitivity of glioblastoma to temozolomide therapy. Very high levels of TOP2A are a good prognostic indicator in GBM patients receiving temozolomide chemotherapy.
Resumo:
We employed different experimental model systems to define the role of GATA4, beta-catenin, and steroidogenic factor (SF-1) transcriptional factors in the regulation of monkey luteal inhibin secretion. Reverse transcription polymerase chain reactions and western blotting analyses show high expression of inhibin-alpha, GATA4, and beta-catenin in corpus luteum (CL) of the mid-luteal phase. Gonadotropin-releasing hormone receptor antagonist-induced luteolysis model suggested the significance of luteinizing hormone (LH) in regulating these transcriptional factors. Inducible cyclic AMP early repressor mRNA expression was detected in the CL and no change was observed in different stages of CL. Following amino acid sequence analysis, interaction between SF-1 and beta-catenin in mid-stage CL was verified by reciprocal co-immunoprecipitation experiments coupled to immunoblot analysis. Electrophoretic mobility shift analysis support the role of SF-1 in regulating luteal inhibin-alpha expression. Our results suggest a possible multiple crosstalk of Wnt, cAMP, and SF-1 in the regulation of luteal inhibin secretion.
Resumo:
Michael additions of alpha-substituted nitrophosphonates to various nitroolefins are shown to proceed with high diastereo- and enantioselectivity when catalyzed by a quinine-derived thiourea-tertiary amine bifunctional catalyst and generate alpha,gamma-diaminophosphonic acid precursors with contiguous quaternary and tertiary stereocenters.
Resumo:
The three-component chiral derivatization protocols have been developed for H-1, C-13 and F-19 NMR spectroscopic discrimination of chiral diacids by their coordination and self-assembly with optically active (R)-alpha-methylbenzylamine and 2-formylphenylboronic acid or 3-fluoro-2-formylmethylboronic acid. These protocols yield a mixture of diastereomeric imino-boronate esters which are identified by the well-resolved diastereotopic peaks with significant chemical shift differences ranging up to 0.6 and 2.1 ppm in their corresponding H-1 and F-19 NMR spectra, without any racemization or kinetic resolution, thereby enabling the determination of enantiopurity. A protocol has also been developed for discrimination of chiral alpha-methyl amines, using optically pure trans-1,2-cyclohexanedicarboxylic acid in combination with 2-formylphenylboronic acid or 3-fluoro-2-fluoromethylboronic acid. The proposed strategies have been demonstrated on large number of chiral diacids and chiral alpha-methyl amines.
Resumo:
The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.
Resumo:
Background: Interaction of non-structural protein 5A (NS5A) of Hepatitis C virus (HCV) with human kinases namely, casein kinase 1 alpha (ck1 alpha) and protein kinase R (PKR) have different functional implications such as regulation of viral replication and evasion of interferon induced immune response respectively. Understanding the structural and molecular basis of interactions of the viral protein with two different human kinases can be useful in developing strategies for treatment against HCV. Results: Serine 232 of NS5A is known to be phosphorylated by human ck1 alpha. A structural model of NS5A peptide containing phosphoacceptor residue Serine 232 bound to ck1 alpha has been generated using the known 3-D structures of kinase-peptide complexes. The substrate interacting residues in ck1 alpha has been identified from the model and these are found to be conserved well in the ck1 family. ck1 alpha - substrate peptide complex has also been used to understand the structural basis of association between ck1 alpha and its other viral stress induced substrate, tumour suppressor p53 transactivation domain which has a crystal structure available. Interaction of NS5A with another human kinase PKR is primarily genotype specific. NS5A from genotype 1b has been shown to interact and inhibit PKR whereas NS5A from genotype 2a/3a are unable to bind and inhibit PKR efficiently. This is one of the main reasons for the varied response to interferon therapy in HCV patients across different genotypes. Using PKR crystal structure, sequence alignment and evolutionary trace analysis some of the critical residues responsible for the interaction of NS5A 1b with PKR have been identified. Conclusions: The substrate interacting residues in ck1 alpha have been identified using the structural model of kinase substrate peptide. The PKR interacting NS5A 1b residues have also been predicted using PKR crystal structure, NS5A sequence analysis along with known experimental results. Functional significance and nature of interaction of interferon sensitivity determining region and variable region 3 of NS5A in different genotypes with PKR which was experimentally shown are also supported by the findings of evolutionary trace analysis. Designing inhibitors to prevent this interaction could enable the HCV genotype 1 infected patients respond well to interferon therapy.
Resumo:
Ternary copper(II) complex Cu(a-lipo)(phen)(Cl)](NO3) where a-lipo = a-lipoic acid, phen is N, N-donor heterocyclic base, 1,10-phenanthroline was synthesized, characterized, and its DNA binding and cleavage activity were studied. Binding interactions of the complex with calf thymus (CT) DNA has been investigated by emission, viscosity, and DNA melting studies. The complex shows efficient oxidative cleavage of SC-DNA in the presence of 3-mercaptopropionic acid involving hydroxyl radical species, and results of control experiments exhibit the inhibition of DNA cleavage in the presence of hydroxyl radical scavengers, viz. DMSO and KI.
Resumo:
alpha-Azidoacetophenones were converted into 2-aryl-1,3-oxazole-4-carbaldehydes through rearrangement of the carbon framework upon exposure to DMF/POCl3. The unprecedented rearrangement occurs via alkenyl azides and 2H-azirines. A mechanism for this unusual reaction was proposed and evidenced.
Resumo:
The incorporation of beta-amino acid residues into the antiparallel beta-strand segments of a multi-stranded beta-sheet peptide is demonstrated for a 19-residue peptide, Boc-LV(beta)FV(D)PGL(beta)FVVL(D)PGLVL(beta)FVV-OMe (BBH19). Two centrally positioned (D)Pro-Gly segments facilitate formation of a stable three-stranded beta-sheet, in which beta-phenylalanine ((beta)Phe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR-derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well-defined three-stranded beta-sheet structure in solution. Cross-strand interactions between (beta)Phe3/(beta)Phe17 and (beta)Phe3/Val15 residues define orientations of these side-chains. The observation of close contact distances between the side-chains on the N- and C-terminal strands of the three-stranded beta-sheet provides strong support for the designed structure. Evidence is presented for multiple side-chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three-stranded beta-sheet structures, which in turn influences the conformational interconversion between type I' and type II' beta-turns at the two (D)Pro-Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc-LV(beta)FV(D)PGL(beta)FVV-OMe (BBH10), which has been previously characterized as a type I' beta-turn nucleated hairpin, is shown to favour a type II' beta-turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.
Resumo:
In the current study, the evolution of microstructure and texture has been studied for Ti-6Al-4V-0.1B alloy during sub-transus thermomechanical processing. This part of the work deals with the deformation response of the alloy by rolling in the (alpha + beta) phase field. The (alpha + beta) annealing behavior of the rolled specimen is communicated in part II. Rolled microstructures of the alloys exhibit either kinked or straight alpha colonies depending on their orientations with respect to the principal rolling directions. The Ti-6Al-4V-0.1B alloy shows an improved rolling response compared with the alloy Ti-6Al-4V because of smaller alpha lamellae size, coherency of alpha/beta interfaces, and multiple slip due to orientation factors. Accelerated dynamic globularization for this alloy is similarly caused by the intralamellar transverse boundary formation via multiple slip and strain accumulation at TiB particles. The (0002)(alpha) pole figures of rolled Ti-6Al-4V alloy shows ``TD splitting'' at lower rolling temperatures because of strong initial texture. Substantial beta phase mitigates the effect of starting texture at higher temperature so that ``RD splitting'' characterizes the basal pole figure. Weak starting texture and easy slip transfer for Ti-6Al-4V-0.1B alloy produce simultaneous TD and RD splittings in basal pole figures at all rolling temperatures.
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.
Resumo:
Background: During female reproductive cycles, a rapid fall in circulating progesterone (P4) levels is one of the earliest events that occur during induced luteolysis in mammals. In rodents, it is well recognized that during luteolysis, P4 is catabolized to its inactive metabolite, 20alpha-hydroxyprogesterone (20alpha-OHP) by the action of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) enzyme and involves transcription factor, Nur77. Studies have been carried out to examine expression of 20alpha-HSD and its activity in the corpus luteum (CL) of buffalo cow. Methods: The expression of 20alpha-HSD across different bovine tissues along with CL was examined by qPCR analysis. Circulating P4 levels were monitored before and during PGF2alpha treatment. Expression of 20alpha-HSD and Nur77 mRNA was determined in CL at different time points post PGF2alpha treatment in buffalo cows. The chromatographic separation of P4 and its metabolite, 20alpha-OHP, in rat and buffalo cow serum samples were performed on reverse phase HPLC system. To further support the findings, 20alpha-HSD enzyme activity was quantitated in cytosolic fraction of CL of both rat and buffalo cow. Results: Circulating P4 concentration declined rapidly in response to PGF2alpha treatment. HPLC analysis of serum samples did not reveal changes in circulating 20alpha-OHP levels in buffalo cows but serum from pseudo pregnant rats receiving PGF2alpha treatment showed an increased 20alpha-OHP level at 24 h post treatment with accompanying decrease in P4 concentration. qPCR expression of 20alpha-HSD in CL from control and PGF2alpha-treated buffalo cows showed higher expression at 3 and 18 h post treatment, but its specific activity was not altered at different time points post PGF2alpha treatment. The Nur77 expression increased several fold 3 h post PGF2alpha treatment similar to the increased expression observed in the PGF2alpha-treated pseudo pregnant rats which perhaps suggest initiation of activation of apoptotic pathways in response to PGF2alpha treatment. Conclusions: The results taken together suggest that synthesis of P4 appears to be primarily affected by PGF2alpha treatment in buffalo cows in contrast to increased metabolism of P4 in rodents.
Resumo:
Thermo-mechanically processed Ti-6Al-4V alloy, with (0.1 wt.%) and without boron addition, has been subjected to tensile test under superplastic deformation conditions (Temperature, T = 850 degrees C and initial strain rate, (epsilon) over dot = 3 x 10(-4) s(-1)). The boron added alloy exhibited higher elongation (similar to 430%) in comparison to the base alloy without boron (similar to 365%). Superior ductility of the boron added alloy has been attributed to an enhanced alpha/beta interfacial boundary sliding. This was caused by riotous dynamic globularization leading to the abundant presence of equiaxed primary alpha grains with refined sizes and narrow distribution in the deforming microstructure. Cavities do occur around TiB particles during deformation; the cavities are, however, extremely localized and do not cause macroscopic cracking. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A regular secondary structure is described by a well defined set of values for the backbone dihedral angles (phi,psi and omega) in a polypeptide chain. However in real protein structures small local variations give rise to distortions from the ideal structures, which can lead to considerable variation in higher order organization. Protein structure analysis and accurate assignment of various structural elements, especially their terminii, are important first step in protein structure prediction and design. Various algorithms are available for assigning secondary structure elements in proteins but some lacunae still exist. In this study, results of a recently developed in-house program ASSP have been compared with those from STRIDE, in identification of alpha-helical regions in both globular and membrane proteins. It is found that, while a combination of hydrogen bond patterns and backbone torsional angles (phi-psi) are generally used to define secondary structure elements, the geometry of the C-alpha atom trace by itself is sufficient to define the parameters of helical structures in proteins. It is also possible to differentiate the various helical structures by their C-alpha trace and identify the deviations occurring both at mid-positions as well as at the terminii of alpha-helices, which often lead to occurrence of 3(10) and pi-helical fragments in both globular and membrane proteins.