882 resultados para 2D EXSY 13C nuclear magnetic resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of pore-space morphology can be inferred from NMR diffusion-diffraction plots or the time-dependence of the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted diffusion propagator, which describes the distribution of diffusing particles for a given starting position and diffusion time. We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the restricted diffusion propagator connecting points A and B in time t is proportional to the number of distinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries, the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for periodic systems. Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial techniques; and MTM, to the Fokker-Planck master equation. The relationship between LPC, MTM and other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion propagators. Initial tests indicate that their computational performance is comparable to that of finite element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no analytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous materials and model biological tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3-aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of –CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at 66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The caseins (αs1, αs2, β, and κ) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1–44) of bovine κ-casein, the protein which maintains the micellar structure of the caseins. κ-Casein (1–44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro8 to Arg34. This is the first report which demonstrates extensive secondary structure within the casein class of proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of paramagnetic probes in membrane research is reviewed. Electron paramagnetic resonance studies on model and biological membranes doped with covalent and non-covalent spin-labels have been discussed with special emphasis on the methodology and the type of information obtainable on several important phenomena like membrane fluidity, lipid flip-flop, lateral diffusion of lipids, lipid phase separation, lipid bilayer phase transitions, lipid-protein interactions and membrane permeability. Nuclear magnetic resonance spectroscopy has also been effectively used to study the conformations of cation mediators across membranes and to analyse in detail the transmembrane ionic motions at the mechanistic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural biology is a branch of science that concentrates on the relationship between the structure and function of biological macromolecules. The prevalence of a large number of three dimensional structures offers effective tools for bio-scientists to understand the living world. Actin is the most abundant cellular protein and one of its main functions is to produce movement in living cells. Actin forms filaments that are dynamic and which are regulated by a number of different proteins. A class of these regulatory proteins contains actin depolymerizing factor homology (ADF-H) domains. These directly interact with actin through their ADF-H domains. Although ADF-H domains possess very similar three dimensional structures to one another, they vary in their functional properties. One example of this is the ability to bind to actin monomers or filaments. During the work for this thesis two structures of ADF-H domains were solved by nuclear magnetic resonance spectroscopy (NMR). The elucidated structures help us understand the binding specificities of the ADF-H family members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon particles synthesized by acetylene pyrolysis in a porous graphite reactor have been investigated. The intimate chemical and physical structures of the particles were probed by proton nuclear magnetic resonance spectroscopy, infrared Fourier transform spectroscopy and X-ray diffraction. The analysis points towards a chemical structure composed of soluble low-mass aromatics surrounding small insoluble larger aromatic islands bridged by aliphatic groups. The diffraction profile indicates that the particles are mostly amorphous with small crystalline domains of not, vert, similar6.5 Å composed of a few stacked graphene layers. The properties of these particles are compared with these obtained with other types of production methods such as laser pyrolysis and combustion flames. The results are briefly discussed in the context of the evolution of infrared interstellar emitters. Possible uses of the reactor are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein conformations and dynamics can be studied by nuclear magnetic resonance spectroscopy using dilute liquid crystalline samples. This work clarifies the interpretation of residual dipolar coupling data yielded by the experiments. It was discovered that unfolded proteins without any additional structure beyond that of a mere polypeptide chain exhibit residual dipolar couplings. Also, it was found that molecular dynamics induce fluctuations in the molecular alignment and doing so affect residual dipolar couplings. The finding clarified the origins of low order parameter values observed earlier. The work required the development of new analytical and computational methods for the prediction of intrinsic residual dipolar coupling profiles for unfolded proteins. The presented characteristic chain model is able to reproduce the general trend of experimental residual dipolar couplings for denatured proteins. The details of experimental residual dipolar coupling profiles are beyond the analytical model, but improvements are proposed to achieve greater accuracy. A computational method for rapid prediction of unfolded protein residual dipolar couplings was also developed. Protein dynamics were shown to modulate the effective molecular alignment in a dilute liquid crystalline medium. The effects were investigated from experimental and molecular dynamics generated conformational ensembles of folded proteins. It was noted that dynamics induced alignment is significant especially for the interpretation of molecular dynamics in small, globular proteins. A method of correction was presented. Residual dipolar couplings offer an attractive possibility for the direct observation of protein conformational preferences and dynamics. The presented models and methods of analysis provide significant advances in the interpretation of residual dipolar coupling data from proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop practical and reliable x-ray scattering methods to study the nanostructure of the wood cell wall and to use these methods to systematically study the nanostructure of Norway spruce and Scots pine grown in Finland and Sweden. Methods to determine the microfibril angle (MFA) distribution, the crystallinity of wood, and the average size of cellulose crystallites using wide-angle x-ray scattering were developed and these parameters were determined as a function of the number of the year ring. The mean MFA in Norway spruce decreases rapidly as a function of the number of the year ring and after the 7th year ring it varies between 6° and 10°. The mean MFA of Scots pine behaves the same way as the mean MFA of Norway spruce. The thickness of cellulose crystallites for Norway spruce and Scots pine appears to be constant as a function of the number of the year ring. The obtained mean values are 32 Å for Norway spruce and 31 Å for Scots pine. The length of the cellulose crystallites was also quite constant as a function of the year ring. The mean length of the crystallites for Norway spruce was 364 Å, while the standard deviation was 27 Å. The mass fraction of crystalline cellulose in wood is the crystallinity of wood and the intrinsic crystallinity of cellulose is the crystallinity of cellulose. The crystallinity of wood increases from the 2nd year ring to the 10th year ring from the pith and is constant after the 10th year ring. The crystallinity of cellulose obtained using nuclear magnetic resonance spectroscopy was 52% for both species. The crystallinity of wood and the crystallinity of cellulose behave the same way in Norway spruce and Scots pine. The methods were also applied to studies on thermally modified Scots pine wood grown in Finland. Wood is modified thermally by heating and steaming in order to improve its properties such as biological resistance and dimensional stability. Modification temperatures varied from 100 °C to 240 °C. The thermal modification increases the crystallinity of wood and the thickness of cellulose crystallites but does not influence the MFA distribution. When the modification temperature was 230 °C and time 4 h, the thickness of the cellulose crystallites increased from 31 Å to 34 Å.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein modification via enzymatic cross-linking is an attractive way for altering food structure so as to create products with increased quality and nutritional value. These modifications are expected to affect not only the structure and physico-chemical properties of proteins but also their physiological characteristics, such as digestibility in the GI-tract and allergenicity. Protein cross-linking enzymes such as transglutaminases are currently commercially available, but also other types of cross-linking enzymes are being explored intensively. In this study, enzymatic cross-linking of β-casein, the most abundant bovine milk protein, was studied. Enzymatic cross-linking reactions were performed by fungal Trichoderma reesei tyrosinase (TrTyr) and the performance of the enzyme was compared to that of transglutaminase from Streptoverticillium mobaraense (Tgase). Enzymatic cross-linking reactions were followed by different analytical techniques, such as size exclusion chromatography -Ultra violet/Visible multi angle light scattering (SEC-UV/Vis-MALLS), phosphorus nuclear magnetic resonance spectroscopy (31P-NMR), atomic force (AFM) and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). The research results showed that in both cases cross-linking of β-casein resulted in the formation of high molecular mass (MM ca. 1 350 kg mol-1), disk-shaped nanoparticles when the highest enzyme dosage and longest incubation times were used. According to SEC-UV/Vis-MALLS data, commercial β-casein was cross-linked almost completely when TrTyr and Tgase were used as cross-linking enzymes. In the case of TrTyr, high degree of cross-linking was confirmed by 31P-NMR where it was shown that 91 % of the tyrosine side-chains were involved in the cross-linking. The impact of enzymatic cross-linking of β-casein on in vitro digestibility by pepsin was followed by various analytical techniques. The research results demonstrated that enzymatically cross-linked β-casein was stable under the acidic conditions present in the stomach. Furthermore, it was found that cross-linked β-casein was more resistant to pepsin digestion when compared to that of non modified β-casein. The effects of enzymatic cross-linking of β-casein on allergenicity were also studied by different biochemical test methods. On the basis of the research results, enzymatic cross-linking decreased allergenicity of native β-casein by 14 % when cross-linked by TrTyr and by 6 % after treatment by Tgase. It can be concluded that in addition to the basic understanding of the reaction mechanism of TrTyr on protein matrix, the research results obtained in this study can have high impact on various applications like food, cosmetic, medical, textile and packing sectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the first study of the microstructure of a copolyperoxide by nuclear magnetic resonance spectroscopy. The copolyperoxides of styrene and methyl methacrylate (MMA) of various compositions have been synthesized. An analysis of the resonance signal of the backbone methylene protons gave the diad sequence probabilities which led to the calculation of the oxidative copolymerization reactivity ratios for styrene and MMA and the microstructural parameters like average chain length of the repeat unit sequences, run number, etc. The results point to the tendency of the SO1 and MO:! units to alternate in the chain. Compared to poly(styrene peroxide), the aromatic C1 seems to be stereosensitive in the terpolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3,6-Dibromo-N-ethylcarbazole (DBNEC) and its polymeric analogue poly-3,6-dibromovinylcarbazole (PDBVCz) were studied by transient absorption spectroscopy. The transient absorption spectrum of the 3,6-dibromo-N-ethylcarbazole radical cation and decay rate constants of radical cations of 3,6-dibromo-N-ethylcarbazole and its polymeric analogue are presented. In the case of unsubstituted carbazole, the ratio of the yield of radical cation of monomer to polymer is 2.0, whereas in the case of PDBVCz, under the same experimental conditions, the yield of the radical cation is an order of magnitude less in comparison with the monomer model compound DBNEC. This drastic difference in yield has been correlated to the difference in the conformational structure of the polymer as evidenced by nuclear magnetic resonance spectroscopy. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the significant advancements in Nuclear Magnetic Resonance spectroscopy (NMR) in combating the problem of spectral complexity for deriving the structure and conformational information is the incorporation of additional dimension and to spread the information content in a two dimensional space. This approach together with the manipulation of the dynamics of nuclear spins permitted the designing of appropriate pulse sequences leading to the evolution of diverse multidimensional NMR experiments. The desired spectral information can now be extracted in a simplified and an orchestrated manner. The indirect detection of multiple quantum (MQ) NMR frequencies is a step in this direction. The MQ technique has been extensively used in the study of molecules aligned in liquid crystalline media to reduce spectral complexity and to determine molecular geometries. Unlike in dipolar coupled systems, the size of the network of scalar coupled spins is not big in isotropic solutions and the MQ 1H detection is not routinely employed,although there are specific examples of spin topology filtering. In this brief review, we discuss our recent studies on the development and application of multiple quantum correlation and resolved techniques for the analyses of proton NMR spectra of scalar coupled spins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.