997 resultados para 1995_01240858 MOC-10


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K K+-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In developing materials with better tribological properties, it is always conceived that the addition of softer phase would result in better frictional behavior. In order to address this issue, we report here the results of fretting wear study on Cu-10 wt% TiB2 and Cu-10 wt% TiB2-10 wt% Pb composites, sintered using spark plasma sintering (SPS) technique. It was found out that the addition of softer phase i.e. 10 wt % Pb to Cu-10 wt% TiB2 composites has not resulted in the lowering of the coefficient of friction (COF). The combination of steady state COF (0.6) and wear rate (10(-3) mm(3)/N-m) was measured and such properties are even better than that obtained with TiB2 coatings reported in the literature. For Cu-10 wt% TiB2 sintered at different temperature, a lower wear resistance with increase in hardness is being measured. An attempt has been made to correlate the observed wear behavior with the surface and subsurface deformation. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris (Cu, Fe, Ti)(x)O-y was the reason assigned for the observed low wear rate of these composites. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Tb3+ (1-10 mol%) doped CeO2 nanophosphors were synthesized by low temperature solution combustion method. The combustion derived products were well studied by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible (UV-Vis) characterizations. The thermoluminescence (TL) glow curves of CeO2: Tb3+ (1-10 mol%) nanophosphors exposed to c source (60Co) for various doses were discussed for the first time. Two TL glow peaks recorded at 182 and 262 degrees C respectively. The TL intensity at 262 degrees C peak increases linearly in the dose range 0.5-7 kGy. Further, this peak was well defined, intense and glow peak structure does not change with c-dose as a result, it was quite useful in TL dosimetry of ionizing radiations. The kinetic parameters associated with the glow peak were estimated using Chen's half width method. The photoluminescence emission (PLE) spectra consists of characteristic peaks at 544 and 655 nm which were attributed to D-5(4) -> F-7(5) and D-5(4) -> F-7(2) transitions of Tb3+ ions. The optimal concentration of Tb3+ ions was found to be 7 mol%. The color co-ordinates of CeO2: Tb3+ (1-10 mol%) located in green region. Hence, this phosphor was quite useful for display applications. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of copper(II) complex, CuL(phen)(2)](NO3) (CuIP), where L ((E)-N'-(2-oxoindolin-3-ylidene) benzohydrazide) is a N donor ligand and phen is the N, N-donor heterocyclic 1,10-phenanthroline, has been synthesized. The phenyl carbohydrazone conjugated isatin-based ligand L and CuIP were characterized by elemental analysis, infrared, UV-Vis, H-1 and C-13 NMR and ESI-mass spectral data, as well as single-crystal X-ray diffraction. The interaction of calf thymus DNA (CT DNA) with L and CuIP has been investigated by absorption, fluorescence and viscosity titration methods. The complex CuIP displays better binding affinity than the ligand L. The observed DNA binding constant (K-b = 4.15(+/- 0.18) x 10(5) M-1) and binding site size (s = 0.19), viscosity data together with molecular docking studies of CuIP suggest groove binding and/or a partial intercalative mode of binding to CT DNA. In addition, CuIP shows good binding propensity to the bovine serum albumin (BSA) protein, giving a K-BSA value of 1.25(+/- 0.24) x 10(6) M-1. In addition, the docking studies on DNA and human serum albumin (HSA) CuIP interactions are consistent with the consequence of binding experiments. The in vitro anti-proliferative study establishes the anticancer potency of the CuIP against the human cervical (HeLa) and breast (MCF7) cancer cells; noncancer breast epithelial (MCF10a) cells have also been investigated. CuIP shows better cytotoxicity and sensitivity towards cancer cells over noncancer ones than L under identical conditions, with the appearance of apoptotic bodies. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) with telomeric and genomic G-quadruplex DNA has been extensively studied. However, a comparative study of interactions of TMPyP4 with different conformations of human telomeric G-quadruplex DNA, namely, parallel propeller-type (PP), antiparallel basket-type (AB), and mixed hybrid-type (MH) G-quadruplex DNA, has not been done. We considered all the possible binding sites in each of the G-quadruplex DNA structures and docked TMPyP4 to each one of them. The resultant most potent sites for binding were analyzed from the mean binding free energy of the complexes. Molecular dynamics simulations were then carried out, and analysis of the binding free energy of the TMPyP4-G-quadruplex complex showed that the binding of TMPyP4 with parallel propeller-type G-quadruplex DNA is preferred over the other two G-quadruplex DNA conformations. The results obtained from the change in solvent excluded surface area (SESA) and solvent accessible surface area (SASA) also support the more pronounced binding of the ligand with the parallel propeller-type G-quadruplex DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cells, N-10-formyltetrahydrofolate (N-10-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N-10-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (Delta folD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N-10-fTHF in the Delta folD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N-10-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The Delta folD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural effects of a representative disallowed conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D (H-1, C-13) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)-helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib*-Oxa) of 2, in a conformation (phi, =180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)-helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations. (c) 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 21-36, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the titled tricyclic orthocarbonate derivative, the three endocyclic C-O bonds are longer than the exo-cyclic C-O bond (similar to 4.40 angstrom vs. similar to 1.37 angstrom). This indicates an anomeric-type interaction between the two electron lone pairs on the exocyclic oxygen atom and the antibonding orbitals of the two antiperiplanar endocyclic C-O bonds. The remaining endocyclic C-O bond - marginally shorter than the other two apparently adds to this effect. Intriguingly, the antibonding orbital of the exocyclic C-O bond extends into the interior of the adamantyl cage, and is stereoelectronically prevented from overlapping with any of the six adjacent lone pairs. The results also seem to indicate a preference for interaction between a single donor oxygen atom and multiple acceptor antibonding orbitals rather than vice versa. The results add insightfully to the substantial body of evidence favouring the antiperiplanar lone pair hypothesis (ALPH). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) catalyzes interconversion of 5,10-methylene-tetrahydrofolate and 10-formyl-tetrahydrofolate in the one-carbon metabolic pathway. In some organisms, the essential requirement of 10-formyl-tetrahydrofolate may also be fulfilled by formyltetrahydrofolate synthetase (Fhs). Recently, we developed an Escherichia coli strain in which the folD gene was deleted in the presence of Clostridium perfringens fhs (E. coli Delta folD/p-fhs) and used it to purify FolD mutants (free from the host-encoded FolD) and determine their biological activities. Mutations in the key residues of E. coli FolD, as identified from three-dimensional structures (D121A, Q98K, K54S, Y50S, and R191E), and a genetic screen (G122D and C58Y) were generated, and the mutant proteins were purified to determine their kinetic constants. Except for the R191E and K54S mutants, others were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. While the R191E mutant showed high cyclohydrolase activity, it retained only a residual dehydrogenase activity. On the other hand, the K54S mutant lacked the cyclohydrolase activity but possessed high dehydrogenase activity. The D121A and G122D (in a loop between two helices) mutants were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. In vivo and in vitro characterization of wild-type and mutant (R191E, G122D, D121A, Q98K, C58Y, K54S, and Y50S) FolD together with three-dimensional modeling has allowed us to develop a better understanding of the mechanism for substrate binding and catalysis by E. coli FolD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural effects of a representative ``disallowed'' conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D (H-1, C-13) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)- helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib(star)-Oxa) of 2, in a conformation (phi, psi = 180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)- helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations. (C) 2014 Wiley Periodicals, Inc. Biopolymers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural effects of a representative ``disallowed'' conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D (H-1, C-13) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)- helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib(star)-Oxa) of 2, in a conformation (phi, psi = 180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)- helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations. (C) 2014 Wiley Periodicals, Inc. Biopolymers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR3) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (mu s). Interestingly, TR3 spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ assigned to n pi* and pi pi* of which the pi pi* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (similar to 2 ns) between the T-2(1(3)n pi*) and T-1(1(3)pi pi*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents J. Chem. Phys. 2015, 142, 24305] suggest that the lowest n pi* and pi pi* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism.