941 resultados para 12S rRNA
Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes
Resumo:
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.
Resumo:
Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.
Resumo:
A phylogenetic hypothesis for the lepidopteran superfamily Noctuoidea was inferred based on the complete mitochondrial (mt) genomes of 12 species (six newly sequenced). The monophyly of each noctuoid family in the latest classification was well supported. Novel and robust relationships were recovered at the family level, in contrast to previous analyses using nuclear genes. Erebidae was recovered as sister to (Nolidae+(Euteliidae+Noctuidae)), while Notodontidae was sister to all these taxa (the putatively basalmost lineage Oenosandridae was not included). In order to improve phylogenetic resolution using mt genomes, various analytical approaches were tested: Bayesian inference (BI) vs. maximum likelihood (ML), excluding vs. including RNA genes (rRNA or tRNA), and Gblocks treatment. The evolutionary signal within mt genomes had low sensitivity to analytical changes. Inference methods had the most significant influence. Inclusion of tRNAs positively increased the congruence of topologies, while inclusion of rRNAs resulted in a range of phylogenetic relationships varying depending on other analytical factors. The two Gblocks parameter settings had opposite effects on nodal support between the two inference methods. The relaxed parameter (GBRA) resulted in higher support values in BI analyses, while the strict parameter (GBDH) resulted in higher support values in ML analyses.
Resumo:
The native Asian oyster, Crassostrea ariakensis is one of the most common and important Crassostrea species that occur naturally along the coast of East Asia. Molecular species diagnosis is a prerequisite for population genetic analysis of wild oyster populations because oyster species cannot be discriminated reliably using external morphological characters alone due to character ambiguity. To date there have been few phylogeographic studies of natural edible oyster populations in East Asia, in particular this is true of the common species in Korea C. ariakensis. We therefore assessed the levels and patterns of molecular genetic variation in East Asian wild populations of C. ariakensis from Korea, Japan, and China using DNA sequence analysis of five concatenated mtDNA regions namely; 16S rRNA, cytochrome oxidase I, cytochrome oxidase II, cytochrome oxidase III, and cytochrome b. Two divergent C. ariakensis clades were identified between southern China and remaining sites from the northern region. In addition, hierarchical AMOVA and pairwise UST analyses showed that genetic diversity was discontinuous among wild populations of C. ariakensis in East Asia. Biogeographical and historical sea level changes are discussed as potential factors that may have influenced the genetic heterogeneity of wild C. ariakensis stocks across this region.
Resumo:
Humans and microbes have developed a symbiotic relationship over time, and alterations in this symbiotic relationship have been linked to several immune mediated diseases such as inflammatory bowel disease, type 1 diabetes and spondyloarthropathies. Improvements in sequencing technologies, coupled with a renaissance in 16S rRNA gene based community profiling, have enabled the characterization of microbiomes throughout the body including the gut. Improved characterization and understanding of the human gut microbiome means the gut flora is progressively being explored as a target for novel therapies including probiotics and faecal microbiota transplants. These innovative therapies are increasingly used for patients with debilitating conditions where conventional treatments have failed. This review discusses the current understanding of the interplay between host genetics and the gut microbiome in the pathogenesis of spondyloarthropathies, and how this may relate to potential therapies for these conditions.
Resumo:
Chlamydial infections of fish are emerging as an important cause of disease in new and established aquaculture industries. To date, epitheliocystis, a skin and gill disease associated with infection by these obligate intracellular pathogens, has been described in over 90 fish species, including hosts from marine and fresh water environments. Aided by advances in molecular detection and typing, recent years have seen an explosion in the description of these epitheliocystis-related chlamydial pathogens of fish, significantly broadening our knowledge of the genetic diversity of the order Chlamydiales. Remarkably, in most cases, it seems that each new piscine host studied has revealed the presence of a phylogenetically unique and novel chlamydial pathogen, providing researchers with a fascinating opportunity to understand the origin, evolution and adaptation of their traditional terrestrial chlamydial relatives. Despite the advances in this area, much still needs to be learnt about the epidemiology of chlamydial infections in fish if these pathogens are to be controlled in farmed environments. The lack of in vitro methods for culturing of chlamydial pathogens of fish is a major hindrance to this field. This review provides an update on our current knowledge of the taxonomy and diversity of chlamydial pathogens of fish, discusses the impact of these infections on the health, and highlights further areas of research required to understand the biology and epidemiology of this important emerging group of fish pathogens of aquaculture species.
Resumo:
The ecology of the uncultured, but large and morphologically conspicuous, rumen bacterium Oscillospira spp. was studied. Oscillospira-specific 16S rRNA gene sequences were detected in North American domestic cattle, sheep from Australia and Japan, and Norwegian reindeer. Phylogenetic analysis of the sequences obtained allowed definition of three operational taxonomic units within the Oscillospira clade. Consistent with this genetic diversity, we observed atypical smaller morphotypes by using an Oscillospira-specific fluorescence in situ hybridization probe. Despite the visual disappearance of typical large Oscillospira morphotypes, the presence of Oscillospira spp. was still detected by Oscillospira-specific PCR in the rumen of cattle and sheep. These observations suggest the broad presence of Oscillospira species in various rumen ecosystems with the level, and most likely the morphological form, dependent on diet. An ecological analysis based on enumeration of the morphologically conspicuous, large-septate form confirms that the highest counts are associated with the feeding of fresh forage diets to cattle and sheep and in two different subspecies of reindeer investigated.
Resumo:
THE rapid development of recombinant DNA technology has brought forth a revolution in biology'>", it aids us to have a closer look at the 'way genes are organized, eS11 ecially in the complex eucaryotic genornes'<", Although many animal and yeast genes have been studied in detail using recombinant DNA technology, plant genes have seldom been targets for such studie., Germination is an ideal process to study gene expression .because it effects a . shift in the metabolic status of seeds from a state of 'dormancy to an active one. AJ;l understanding of gene organization and regulation darin.g germination can be accomplblted by molecular cloning of DNA from seeds lik.e rice. To study the status of histone, rRNA tRNA and other genes in the rice genome, a general method was developed to clone eucarvotic DNA in a' plasmid vector pBR 322. This essentially ~ involves the following steps. The rice embryo and plasmid pBR 322 DNAs were cut witll restriction endonuclease Bam Hi to generate stick.Y ends, The plasmid DNA was puosphatased, the DNA~ ware a~·tnealed and joined 'by T4 phage DNA ligase. The recombinant DNA molecules thus produced were transjerred into E. coli and colonies containing them Were selected by their sensitivity to tetracycline and resistance to ampicillin, Two clones were identified . 2S haVing tRNA genes by hybridization of the DNA in the clones \vitl1 32P-la.belled rice tRNAs.
Resumo:
In newly invaded communities, interspecific competition is thought to play an important role in determining the success of the invader and its impact on the native community. In southern Australia, the native Polistes humilis was the predominant social wasp prior to the arrival of the exotic Vespula germanica (Hymenoptera: Vespidae). Both species forage for similar resources (water, pulp, carbohydrate and protein prey), and concerns have arisen about potential competition between them. The aim of this study was to identify the protein foods that these wasps feed on. As many prey items are masticated by these wasps to the degree that they cannot be identified using conventional means, morphological identification was complemented by sequencing fragments of the mitochondrial 16S rRNA gene. GenBank searches using blast and phylogenetic analyses were used to identify prey items to at least order level. The results were used to construct complete prey inventories for the two species. These indicate that while P. humilis is restricted to feeding on lepidopteran larvae, V. germanica collects a variety of prey of invertebrate and vertebrate origin. Calculated values of prey overlap between the two species are used to discuss the implications of V. germanica impacting on P. humilis. Results obtained are compared to those gained by solely 'conventional' methods, and the advantages of using DNA-based taxonomy in ecological studies are emphasized.
Resumo:
This paper describes a phenotypic and genotypic investigation of the taxonomy of [Haemophilus] paragallinarum, Pasteurella gallinarum, Pasteurella avium and Pasteurella volantium, a major subcluster within the avian 16S rRNA cluster 18 of the family Pasteurellaceae. An extended phenotypic characterization was performed of the type strain of [Haemophilus] paragallinarum, which is NAD-dependent, and eight NAD-independent strains of [Haemophilus] paragallinarum. Complete 16S rRNA gene sequences were obtained for one NAD-independent and four NAD-dependent [Haemophilus] paragallinarum strains. These five sequences along with existing 16S rRNA gene sequences for 11 other taxa within avian 16S rRNA cluster 18 as well as seven other taxa from the Pasteurellaceae were subjected to phylogenetic analysis. The analysis demonstrated that [Haemophilus] paragallinarum, Pasteurella gallinarum, Pasteurella avium and Pasteurella volantium formed a monophyletic group with a minimum of 96·8% sequence similarity. This group can also be separated by phenotypic testing from all other recognized and named taxa within the Pasteurellaceae. As both genotypic and phenotypic testing support the separate and distinct nature of this subcluster, the transfer is proposed of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium to a new genus Avibacterium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov. The type strains are NCTC 1118T (Avibacterium gallinarum), NCTC 11296T (Avibacterium paragallinarum), NCTC 11297T (Avibacterium avium) and NCTC 3438T (Avibacterium volantium). Key characteristics that separate these four species are catalase activity (absent only in Avibacterium paragallinarum) and production of acid from galactose (negative only in Avibacterium paragallinarum), maltose (negative only in Avibacterium avium) and mannitol (negative in Avibacterium gallinarum and Avibacterium avium).
Resumo:
The dwarf somaclonal variant is a major problem affecting micropropagation of the banana cultivar Williams (Musa spp. AAA; subgroup Cavendish). This problem arises from genetic changes that occur during the tissue culture process. Early identification of this problem is difficult and propagators must wait until plants are ex vitro in order to visualise the dwarfism phenotype. In this study, we have improved a SCAR-based molecular diagnostic technique, developed by Damasco et al. [Acta Hortic. 461 (1997) 157], for the early identification of dwarf off-types. We have included a positive internal control in a multiplex PCR and adapted the technique for use with small amounts of fresh in vitro leaf material as PCR template. The control product is a 500 bp fragment from 18S rRNA and is amplified in all tissues irrespective of phenotype. The use of small in vitro leaf material removing the need for genomic DNA extraction.
Resumo:
[Pasteurella] trehalosi is an important pathogen of sheep, being primarily associated with serious systemic infections in lambs but also having an association with pneumonia. The aim of the present investigation was to characterize a broad collection of strains tentatively identified as [P.] trehalosi in order to reclassify and rename this taxon to support improvements in our understanding of the pathogenesis and epidemiology of this important organism. The type strain for [P.] trehalosi, strain NCTC 10370T, was included along with 42 field isolates from sheep (21), cattle (14), goats (1), roe deer (3) and unknown sources (3). An extended phenotypic characterization was performed on all 43 strains. Amplified fragment length polymorphism (AFLP) was also performed on the isolates. Two of the field isolates were subjected to 16S rRNA gene sequencing. These sequences, along with five existing sequences for [P.] trehalosi strains and 12 sequences for other taxa in the family Pasteurellaceae, were subjected to a phylogenetic analysis. All the isolates and the reference strains were identified as [P.] trehalosi. A total of 17 out of 22 ovine isolates produced acid from all glycosides, while only four out of 14 bovine isolates produced acid from all glycosides. All 22 ovine isolates were haemolytic and CAMP-positive, while no other isolate was haemolytic and only two bovine isolates were CAMP-positive. Nineteen AFLP types were found within the [P.] trehalosi isolates. All [P.] trehalosi isolates shared at least 70% similarity in AFLP patterns. The largest AFLP type included the type strain and 7 ovine field isolates. Phylogenetic analysis indicated that the seven strains studied (two field isolates and the five serovar reference strains) are closely related, with 98.6% or higher 16S rRNA gene sequence similarity. As both genotypic and phenotypic testing support the separate and distinct nature of these organisms, we propose the transfer of [P.] trehalosi to a new genus, Bibersteinia, as Bibersteinia trehalosi comb. nov. The type strain is NCTC 10370T (=ATCC 29703T). Bibersteinia trehalosi can be distinguished from the existing genera of the family by the observation of only nine characteristics; catalase, porphyrin, urease, indole, phosphatase, acid from dulcitol, (+)-D-galactose, (+)-D mannose and (+)-D-trehalose.
Resumo:
A 5′ Taq nuclease assay utilising minor groove binder technology and targeting the 16S rRNA gene was designed to detect Pasteurella multocida (the causative agent of fowl cholera) in swabs collected from poultry. The assay was first evaluated using pure cultures. The assay correctly identified four P. multocida taxonomic type strains, 18 P. multocida serovar reference strains and 40 Australian field isolates (17 from poultry, 11 from pigs and 12 from cattle). Representatives of nine other Pasteurella species, 26 other bacterial species (18 being members of the family Pasteurellaceae) and four poultry virus isolates did not react in the assay. The assay detected a minimum of approximately 10 cfu of P. multocida per reaction. Of 79 poultry swabs submitted to the laboratory for routine bacteriological culture, 17 were positive in the 5′ Taq nuclease assay, but only 10 were positive by culture. The other 62 swabs were negative for P. multocida by both 5′ Taq nuclease assay and culture. The assay is suitable for use in diagnosing fowl cholera, is more rapid than bacteriological culture, and may also have application in diagnosing P. multocida infections in cattle and pigs.
Resumo:
Degradation of RNA in diagnostic specimens can cause false-negative test results and potential misdiagnosis when tests rely on the detection of specific RNA sequence. Current molecular methods of checking RNA integrity tend to be host species or group specific, necessitating libraries of primers and reaction conditions. The objective here was to develop a universal (multi-species) quality assurance tool for determining the integrity of RNA in animal tissues submitted to a laboratory for analyses. Ribosomal RNA (16S rRNA) transcribed from the mitochondrial 16S rDNA was used as template material for reverse transcription to cDNA and was amplified using polymerase chain reaction (PCR). As mitochondrial DNA has a high level of conservation, the primers used were shown to reverse transcribe and amplify RNA from every animal species tested. Deliberate degradation of rRNA template through temperature abuse of samples resulted in no reverse transcription and amplification. Samples spiked with viruses showed that single-stranded viral RNA and rRNA in the same sample degraded at similar rates, hence reverse transcription and PCR amplification of 16S rRNA could be used as a test of sample integrity and suitability for analysis that required the sample's RNA, including viral RNA. This test will be an invaluable quality assurance tool for determination of RNA integrity from tissue samples, thus avoiding erroneous test results that might occur if degraded target RNA is used unknowingly as template material for reverse transcription and subsequent PCR amplification.