994 resultados para <2 µm fraction
Resumo:
One of the objectives of Leg 55 was to investigate the Tertiary history of sedimentation and environment on the Emperor Seamounts after their volcanic activity. For the three first sites, 430, 431, and 432, drilled on Ojin, Nintoku, and Yömei Seamounts, the Neogene sedimentary deposits are not well represented and are not typical pelagic sediments. Except for two holes (430A and 432), where we found calcareous oozes, the sediments are heterogeneous sands, gravels, and pebbly mudstones with a wide range in grain size and composition. Two phenomena characterize these deposits: the inheritance of volcaniclastic material and its alteration, and the authigenesis of secondary minerals including silicates, phosphates, and ferromanganese oxides formed under volcanic influence in a marine environment.
Resumo:
Investigations of borehole waters sampled in Hole 504B during Leg 92 revealed changes in major-ion composition similar to changes observed previously (during Leg 83). The uniformity of chloride concentrations with increasing depth suggests efficient downhole mixing processes along density gradients caused by large temperature gradients. Chemical and mineralogical studies of suspended drilling mud (bentonite) suggest that this material has undergone substantial alteration and that CaSO4 (anhydrite/gypsum) has precipitated in the deeper parts of the hole. Rare earth element studies suggest contributions of both the bentonites and the basalts to the REE distributions. Studies of the isotopic composition (87Sr/86Sr) of dissolved strontium indicate a strong contribution of basaltic nonradiogenic strontium, although differences between the Leg 83 and Leg 92 data indicate an influence of bentonite during Leg 92. The oxygen isotope composition of the water does not change appreciably downhole. This uniformity can be understood in terms of high water-rock ratios and suggests that the chemical changes observed are due either to alteration processes involving bentonites and basaltic material from the walls of the hole or to exchange with formation fluids from the surrounding basement, which may have altered in composition at relatively high water-rock ratios.
Resumo:
Downhole bulk-sample and clay-mineral analytical results for Sites 558 and 563 are presented in this chapter. These results show a Tertiary climatic and hydrologic evolution similar to that at other DSDP drill sites in the northeastern Atlantic Ocean (Sites 398, 403-406, 548-550, 552-555). The sediments recovered at both sites are primarily calcareous and chalky oozes characterized by >90% carbonate and minor quartz and plagioclase feldspar. Clay minerals smectite, kaolinite, illite, and chlorite are present throughout the cores; upsection, illite increases at the expense of smectite. The clay mineralogy suggests climatic cooling and increased ocean circulation during the Miocene. Intervals rich in very fine grained (<2 µm) quartz suggest times of increased eolian input. This could have resulted from development, during Oligocene and late Miocene time, of an arid, desertlike sediment provenance that lasted until the present day.
Resumo:
Clay minerals recovered from the Galapagos hydrothermal mounds (Holes 506C, 507D, and 509B) are mainly iron-rich nontronite-like minerals enriched in potassium. Nontronites from Hole 509B show a distinct tendency to become micaceous toward the lower beds of clay sediments. Mn-crusts consist mainly of todorokite or a mixture of todorokite and nontronite. Minerals of clay and Mnrich sediments in the mounds originated from hydrothermal solutions of uncertain origin. Pelagic oozes from hydrothermal mounds and from areas between mounds (Hole 506D) consist mainly of calcite. In the carbonate beds on or near the hydrothermal mounds an admixture of smectite is often found.
Resumo:
The origin and modes of transportation and deposition of inorganic sedimentary material of the Black Sea were studied in approximately 60 piston, gravity, and Kasten cores. The investigation showed that the sediment derived from the north and northwest (especially from the Danube) has a low calcite-dolomite ratio and a high quartz-feldspar ratio. Rock fragments are generally not abundant; garnet is the principal heavy mineral and illite is the predominant clay mineral. This sedimentary material differs markedly from that carried by Anatolian rivers, which is characterized by a high calcite-dolomite ratio and a low quartz-feldspar ratio. Rock fragments are abundant; pyroxene is the principal heavy mineral and montmorillonite is the predominant clay mineral. In generel, the clay fraction is large in all sediments (27.6-86.9 percent), and the lateral distributian indicates an increase in clay consent from the coasts toward two centers in the western and eastern Black Sea basin. Illite is the most common clay mineral in the Black Sea sediments. The lateral changes in composition of the clay mineral can easily be traced to the petrologic character of northern (rich in illite) and southern (rich in montmorillonite) source areas. In almost all cores, a rhythmic change of the montmorillonite-illite ratio with depth was observed. These changes may be related to the changing influence of the two provinces during the Holocene and late Pleistocene. Higher montmorillonite content seems to indicate climctic changes, probably stages of glaciation end permafrost in the northern area, at which time the illite supply was diminished to a large extent. The composition of the sand fraction is relatad to the different petrologic and morphologic characteristics of two major source provimces: (1) a northern province (rich in quartz, feldspars, and garnet) characterized by a low elevation, comprising the Danube basin area and the rivers draining the Russian platform; and (2) a southern province (rich in pyroxene and volcanic and metamorphic rocks) in the mountainous region of Anatolia and the Caucasus, characterized by small but extremely erosive rivers. The textural properties (graded bedding) of the deep-sea send layers clearly suggest deposition from turbidity currents. The carbonate content of the contemporary sediments ranges from 5 to 65 percent. It increases from the coast to a maximum in two centers in the western and eastern basin. This pattern reflects the distribution of the <2-µm fraction. The contemporary mud sedimentation is governed by two important factors: (1) the deposition of terrigenous allochthonous material of low carbonate content originating from the surrounding hinterland (northern and southern source areas), and (2) the autochthonous production of large quantities of biogenic calcite by coccolithophores during the last period of about 3,000-4,000 years.
Resumo:
Few astronomically calibrated high-resolution (<=5 kyr) climate records exist that span the Oligocene-Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ~13-Myr interval of the Oligo-Miocene (30.1-17.1 Ma) at high resolution (~3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ~3.4 m and ~0.9 m, which correspond to 405- and ~110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, d18O and d13C are interpreted to coincide with ~110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (~2.4-Myr) are marked by recurrent episodes of high-amplitude ~110-kyr d18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic d18O and especially d13C signals, are more pronounced during ~2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ~110-kyr d18O cycles and the ~1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ~2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene.
Resumo:
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.
Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.
Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.
Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
Resumo:
Contents of mercury and zinc in reduced sediments and interstitial waters of the Gdansk Bay in the Baltic Sea were investigated. It was found that sediments contain 0.7 ppm Hg, of which 0.008 ppm.(0.4% of total) is dissolved in interstitial water, and 91 ppm Zn, of which 0.15 ppm (0.45% of total) is dissolved in interstitial water. Differences in contents in different layers (0-5 and 25-30 cm) can be attributed to anthropogenic influence. Aderage concentration of mercury in the upper sediment layer is 27% higher and one of zinc is 40% higher than those found in the lower sediment layer. In addition, distribution of zinc in grain size fractions of the sediments was investigated, and some data on cadmium content were obtained.
Resumo:
Green clay layers are reported from the Pliocene-Holocene intervals in five of the six sites drilled in the South China Sea (SCS) during Leg 184. Centimeter-scale discrete, discontinuous, and bioturbated layers, constituted by stiff and porous green clays, were observed, sometimes associated with iron sulfides and pyrite. Detailed mineralogical and geochemical analyses indicate that they differentiate from the host sediments in their higher content of iron, smectite, and mixed-layered clays and lower amounts of calcite, authigenic phosphorus, quartz, and organic matter. Although no glauconite was observed, the mineralogy and geochemistry of green clay layers, along with their geometrical relation to background sediments, suggest that they most likely represent the result of the first steps of glauconitization. Correlation between green layers and volcanic ash layers was suggested for green laminae observed elsewhere in Pacific sediments but was not confirmed at SCS sites. Statistical analysis of the temporal distribution of green layers in the records of the last million years suggests that green clay layers have become more frequent since 600 ka. Only at Site 1148 does the green layer record show a statistically significant cyclicity which may be related to orbital eccentricity. A possible influence of sea level variations, related both to climatic changes and tectonism, is postulated.
Resumo:
BACKGROUND: The role of statin therapy in heart failure (HF) is unclear. The amino-terminal propeptide of procollagen type III (PIIINP) predicts outcome in HF, and yet there are conflicting reports of statin therapy effects on PIIINP.
OBJECTIVES: This study determined whether there was an increase in serum markers of inflammation, fibrosis (including PIIINP), and B-type natriuretic peptide (BNP) in patients with systolic HF and normal total cholesterol and determined the effects of long-term treatment with atorvastatin on these markers.
METHODS: Fifty-six white patients with systolic HF and normal cholesterol levels (age 72 [13] years; 68% male; body mass index 27.0 [7.3] kg/m(2); ejection fraction 35 [13]%; 46% with history of smoking) were randomly allocated to atorvastatin treatment for 6 months, titrated to 40 mg/d (A group) or not (C group). Age- and/or sex-matched subjects without HF (N group) were also recruited. Biomarkers were measured at baseline (all groups) and 6 months (A and C groups).
RESULTS: Serum markers of collagen turnover, inflammation, and BNP were significantly elevated in HF patients compared with normal participants (all P < 0.05). There were correlations between these markers in HF patients but not in normal subjects. Atorvastatin treatment for 6 months caused a significant reduction in the following biomarkers compared with baseline: BNP, from median (interquartile range) 268 (190-441) pg/mL to 185 (144-344) pg/mL; high-sensitivity C-reactive protein (hs-CRP), from 5.26 (1.95 -9.29) mg/L to 3.70 (2.34-6.81) mg/L; and PIIINP, from 4.65 (1.86) to 4.09 (1.25) pg/mL (all P < 0.05 baseline vs 6 months). Between-group differences were significant for PIIINP only (P = 0.027). There was a positive interaction between atorvastatin effects and baseline hs-CRP and PIIINP (P < 0.01).
CONCLUSIONS: Long-term statin therapy reduced PIIINP in this small, selected HF population with elevated baseline levels. Further evaluation of statin therapy in the management of HF patients with elevated PIIINP is warranted.
Resumo:
The aim of this study was to investigate the diagnosis delay and its impact on the stage of disease. The study also evaluated a nuclear DNA content, immunohistochemical expression of Ki-67 and bcl-2, and the correlation of these biological features with the clinicopathological features and patient outcome. 200 Libyan women, diagnosed during 2008–2009 were interviewed about the period from the first symptoms to the final histological diagnosis of breast cancer. Also retrospective preclinical and clinical data were collected from medical records on a form (questionnaire) in association with the interview. Tumor material of the patients was collected and nuclear DNA content analysed using DNA image cytometry. The expression of Ki-67 and bcl-2 were assessed using immunohistochemistry (IHC). The studies described in this thesis show that the median of diagnosis time for women with breast cancer was 7.5 months and 56% of patients were diagnosed within a period longer than 6 months. Inappropriate reassurance that the lump was benign was an important reason for prolongation of the diagnosis time. Diagnosis delay was also associated with initial breast symptom(s) that did not include a lump, old age, illiteracy, and history of benign fibrocystic disease. The patients who showed diagnosis delay had bigger tumour size (p<0.0001), positive lymph nodes (p<0.0001), and high incidence of late clinical stages (p<0.0001). Biologically, 82.7% of tumors were aneuploid and 17.3% were diploid. The median SPF of tumors was 11% while the median positivity of Ki-67 was 27.5%. High Ki-67 expression was found in 76% of patients, and high SPF values in 56% of patients. Positive bcl-2 expression was found in 62.4% of tumors. 72.2% of the bcl-2 positive samples were ER-positive. Patients who had tumor with DNA aneuploidy, high proliferative activity and negative bcl-2 expression were associated with a high grade of malignancy and short survival. The SPF value is useful cell proliferation marker in assessing prognosis, and the decision cut point of 11% for SPF in the Libyan material was clearly significant (p<0.0001). Bcl-2 is a powerful prognosticator and an independent predictor of breast cancer outcome in the Libyan material (p<0.0001). Libyan breast cancer was investigated in these studies from two different aspects: health services and biology. The results show that diagnosis delay is a very serious problem in Libya and is associated with complex interactions between many factors leading to advanced stages, and potentially to high mortality. Cytometric DNA variables, proliferative markers (Ki-67 and SPF), and oncoprotein bcl-2 negativity reflect the aggressive behavior of Libyan breast cancer and could be used with traditional factors to predict the outcome of individual patients, and to select appropriate therapy.
Resumo:
Agaricus blazei Murill is a native Brazilian mushroom which functions primarily as an anticancer substance in transplanted mouse tumors. However, the mechanism underlying this function of A. blazei Murill remains obscure. The present study was carried out to investigate the effect of fraction FA-2-b-ß, an RNA-protein complex isolated from A. blazei Murill, on human leukemia HL-60 cells in vitro. Typical apoptotic characteristics were determined by morphological methods using DNA agarose gel electrophoresis and flow cytometry. The growth suppressive effect of fraction FA-2-b-ß on HL-60 cells in vitro occurred in a dose- (5-80 µg/mL) and time-dependent (24-96 h) manner. The proliferation of HL-60 cells (1 x 10(5) cells/mL) treated with 40 µg/mL of fraction FA-2-b-ß for 24-96 h and with 5-80 µg/mL for 96 h resulted in inhibitory rates ranging from 8 to 54.5%, and from 4.9 to 86.3%, respectively. Both telomerase activity determined by TRAP-ELISA and mRNA expression of the caspase-3 gene detected by RT-PCR were increased in HL-60 cells during fraction FA-2-b-ß treatment. The rate of apoptosis correlated negatively with the decrease of telomerase activity (r = 0.926, P < 0.05), but correlated positively with caspase-3 mRNA expression (r = 0.926, P < 0.05). These data show that fraction FA-2-b-ß can induce HL-60 cell apoptosis and that the combined effect of down-regulation of telomerase activity and up-regulation of mRNA expression of the caspase-3 gene could be the primary mechanism of induction of apoptosis. These findings provide strong evidence that fraction FA-2-b-ß could be of interest for the clinical treatment of acute leukemia.
Resumo:
Magnetic properties of nanocrystalline NiFe(2)O(4) spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field (57)Fe Mossbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe(2)O(4) spinel-like structure (n-NiFe(2)O(4)) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features(d-NiFe(2)O(4)). Mossbauer spectrometry determines a large fraction for the d-NiFe(2)O(4) region(62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe(2)O(4) spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe(2)O(4)/n-NiFe(2)O(4) interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe(2)O(4) phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe(2)O(4)/d-NiFe(2)O(4) magnetic interaction is also affected in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The influence of 2 different levels of the inspired oxygen fraction (FiO(2)) on blood gas variables was evaluated in dogs with high intracranial pressure (ICP) during propofol anesthesia (induction followed by a continuous rate infusion [CRI] of 0.6 mg/kg/min) and intermittent positive pressure ventilation (IPPV). Eight adult mongrel dogs were anesthetized on 2 occasions, 21 d apart, and received oxygen at an FiO(2) of 1.0 (G100) or 0.6 (G60) in a randomized crossover fashion. A fiberoptic catheter was implanted on the surface of the right cerebral cortex for assessment of the ICP. An increase in the ICP was induced by temporary ligation of the jugular vein 50 min after induction of anesthesia and immediately after baseline measurement of the ICP. Blood gas measurements were taken 20 min later and then at 15-min intervals for 1 h. Numerical data were submitted to Morrison's multivariate statistical methods. The ICP, the cerebral perfusion pressure and the mean arterial pressure did not differ significantly between FiO(2) levels or measurement times after jugular ligation. The only blood gas values that differed significantly (P < 0.05) were the arterial oxygen partial pressure, which was greater with G100 than with G60 throughout the procedure, and the venous haemoglobin saturation, that was greater with G100 than with G60 at M0. There were no significant differences between FiO(2) levels or measurement times in the following blood gas variables: arterial carbon dioxide partial pressure, arterial hemoglobin saturation, base deficit, bicarbonate concentration, pH, venous oxygen partial pressure, venous carbon dioxide partial pressure and the arterial-to-end-tidal carbon dioxide difference.