968 resultados para variational cumulant expansion method
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nonlinear effects on the early stage of phase ordering are studied using Adomian's decomposition method for the Ginzburg-Landau equation for a nonconserved order parameter. While the long-time regime and the linear behavior at short times of the theory are well understood, the onset of nonlinearities at short times and the breaking of the linear theory at different length scales are less understood. In the Adomians decomposition method, the solution is systematically calculated in the form of a polynomial expansion for the order parameter, with a time dependence given as a series expansion. The method is very accurate for short times, which allows to incorporate the short-time dynamics of the nonlinear terms in a analytical and controllable way. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
We introduce and discuss the method of linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules. Calculations are carried out up to two loops and an expression for the optimized Kahler potential in the Wess-Zumino model is worked out.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We reassess the method of the linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules in the framework of the O'Raifeartaigh model for spontaneous supersymmetry breaking. The effective potential is calculated using both the fastest apparent convergence and the principle of minimal sensitivity criteria and the consistency and efficacy of the method are checked in deriving the Coleman-Weinberg potential.
Resumo:
The quasicausal expansion of the quantum Liouville propagator is introduced into the Weyl-Wigner picture. The zeroth-order term is shown to lead to the statistical quasiclassical method of Lee and Scully [J. Chem. Phys. 73, 2238 (1980)].
Resumo:
A novel constructive heuristic algorithm to the network expansion planning problem is presented the basic idea comes from Garver's work applied to the transportation model, nevertheless the proposed algorithm is for the DC model. Tests results with most known systems in the literature are carried out to show the efficiency of the method.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.
Resumo:
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the nonlinear sigma-model in two dimensions is worked out as an example.
Resumo:
The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.