682 resultados para timed automata
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In this work, we examine unbalanced computation between an initiator and a responder that leads to resource exhaustion attacks in key exchange protocols. We construct models for two cryp-tographic protocols; one is the well-known Internet protocol named Secure Socket Layer (SSL) protocol, and the other one is the Host Identity Protocol (HIP) which has built-in DoS-resistant mechanisms. To examine such protocols, we develop a formal framework based on Timed Coloured Petri Nets (Timed CPNs) and use a simulation approach provided in CPN Tools to achieve a formal analysis. By adopting the key idea of Meadows' cost-based framework and re¯ning the de¯nition of operational costs during the protocol execution, our simulation provides an accurate cost estimate of protocol execution compar- ing among principals, as well as the percentage of successful connections from legitimate users, under four di®erent strategies of DoS attack.
Resumo:
John Frazer's architectural work is inspired by living and generative processes. Both evolutionary and revolutionary, it explores informatin ecologies and the dynamics of the spaces between objects. Fuelled by an interest in the cybernetic work of Gordon Pask and Norbert Wiener, and the possibilities of the computer and the "new science" it has facilitated, Frazer and his team of collaborators have conducted a series of experiments that utilize genetic algorithms, cellular automata, emergent behaviour, complexity and feedback loops to create a truly dynamic architecture. Frazer studied at the Architectural Association (AA) in London from 1963 to 1969, and later became unit master of Diploma Unit 11 there. He was subsequently Director of Computer-Aided Design at the University of Ulter - a post he held while writing An Evolutionary Architecture in 1995 - and a lecturer at the University of Cambridge. In 1983 he co-founded Autographics Software Ltd, which pioneered microprocessor graphics. Frazer was awarded a person chair at the University of Ulster in 1984. In Frazer's hands, architecture becomes machine-readable, formally open-ended and responsive. His work as computer consultant to Cedric Price's Generator Project of 1976 (see P84)led to the development of a series of tools and processes; these have resulted in projects such as the Calbuild Kit (1985) and the Universal Constructor (1990). These subsequent computer-orientated architectural machines are makers of architectural form beyond the full control of the architect-programmer. Frazer makes much reference to the multi-celled relationships found in nature, and their ongoing morphosis in response to continually changing contextual criteria. He defines the elements that describe his evolutionary architectural model thus: "A genetic code script, rules for the development of the code, mapping of the code to a virtual model, the nature of the environment for the development of the model and, most importantly, the criteria for selection. In setting out these parameters for designing evolutionary architectures, Frazer goes beyond the usual notions of architectural beauty and aesthetics. Nevertheless his work is not without an aesthetic: some pieces are a frenzy of mad wire, while others have a modularity that is reminiscent of biological form. Algorithms form the basis of Frazer's designs. These algorithms determine a variety of formal results dependent on the nature of the information they are given. His work, therefore, is always dynamic, always evolving and always different. Designing with algorithms is also critical to other architects featured in this book, such as Marcos Novak (see p150). Frazer has made an unparalleled contribution to defining architectural possibilities for the twenty-first century, and remains an inspiration to architects seeking to create responsive environments. Architects were initially slow to pick up on the opportunities that the computer provides. These opportunities are both representational and spatial: computers can help architects draw buildings and, more importantly, they can help architects create varied spaces, both virtual and actual. Frazer's work was groundbreaking in this respect, and well before its time.
Resumo:
Vitamin D deficiency and insufficiency are now seen as a contemporary health problem in Australia with possible widespread health effects not limited to bone health1. Despite this, the Vitamin D status (measured as serum 25-hydroxyvitamin D (25(OH)D)) of ambulatory adults has been overlooked in this country. Serum 25(OH)D status is especially important among this group as studies have shown a link between Vitamin D and fall risk in older adults2. Limited data also exists on the contributions of sun exposure via ultraviolet radiation and dietary intake to serum 25(OH)D status in this population. The aims of this project were to assess the serum 25(OH)D status of a group of older ambulatory adults in South East Queensland, to assess the association between their serum 25(OH)D status and functional measures as possible indicators of fall risk, obtain data on the sources of Vitamin D in this population and assess whether this intake was related to serum 25(OH)D status and describe sun protection and exposure behaviors in this group and investigate whether a relationship existed between these and serum 25(OH)D status. The collection of this data assists in addressing key gaps identified in the literature with regard to this population group and their Vitamin D status in Australia. A representative convenience sample of participants (N=47) over 55 years of age was recruited for this cross-sectional, exploratory study which was undertaken in December 2007 in south-east Queensland (Brisbane and Sunshine coast). Participants were required to complete a sun exposure questionnaire in addition to a Calcium and Vitamin D food frequency questionnaire. Timed up and go and handgrip dynamometry tests were used to examine functional capacity. Serum 25(OH)D status and blood measures of Calcium, Phosphorus and Albumin were determined through blood tests. The Mean and Median serum 25-Hydroxyvitamin D (25(OH)D) for all participants in this study was 85.8nmol/L (Standard Deviation 29.7nmol/L) and 81.0nmol/L (Range 22-158nmol/L), respectively. Analysis at the bivariate level revealed a statistically significant relationship between serum 25(OH)D status and location, with participants living on the Sunshine Coast having a mean serum 25(OH)D status 21.3nmol/L higher than participants living in Brisbane (p=0.014). While at the descriptive level there was an apparent trend towards higher outdoor exposure and increasing levels of serum 25(OH)D, no statistically significant associations between the sun measures of outdoor exposure, sun protection behaviors and phenotypic characteristics and serum 25(OH)D status were observed. Intake of both Calcium and Vitamin D was low in this sample with sixty-eight (68%) of participants not meeting the Estimated Average Requirements (EAR) for Calcium (Median=771.0mg; Range=218.0-2616.0mg), while eighty-seven (87%) did not meet the Adequate Intake for Vitamin D (Median=4.46ug; Range=0.13-30.0ug). This raises the question of how realistic meeting the new Adequate Intakes for Vitamin D is, when there is such a low level of Vitamin D fortification in this country. However, participants meeting the Adequate Intake (AI) for Vitamin D were observed to have a significantly higher serum 25(OH)D status compared to those not meeting the AI for Vitamin D (p=0.036), showing that meeting the AI for Vitamin D may play a significant role in determining Vitamin D status in this population. By stratifying our data by categories of outdoor exposure time, a trend was observed between increased importance of Vitamin D dietary intake as a possible determinant of serum 25(OH)D status in participants with lower outdoor exposures. While a trend towards higher Timed Up and Go scores in participants with higher 25(OH) D status was seen, this was only significant for females (p=0.014). Handgrip strength showed statistically significant association with serum 25(OH)D status. The high serum 25(OH)D status in our sample almost certainly explains the limited relationship between functional measures and serum 25(OH)D. However, the observation of an association between slower Time Up and Go speeds, and lower serum 25(OH)D levels, even with a small sample size, is significant as slower Timed Up and Go speeds have been associated with increased fall risk in older adults3. Multivariable regression analysis revealed Location as the only significant determinant of serum 25(OH)D status at p=0.014, with trends (p=>0.1) for higher serum 25(OH)D being shown for participants that met the AI for Vitamin D and rated themselves as having a higher health status. The results of this exploratory study show that 93.6% of participants had adequate 25(OH)D status-possibly due to measurement being taken in the summer season and the convenience nature of the sample. However, many participants do not meet their dietary Calcium and Vitamin D requirements, which may indicate inadequate intake of these nutrients in older Australians and a higher risk of osteoporosis. The relationship between serum 25(OH)D and functional measures in this population also requires further study, especially in older adults displaying Vitamin D insufficiency or deficiency.
Resumo:
Background/Aims: In an investigation of the functional impact of amblyopia on children, the fine motor skills, perceived self-esteem and eye movements of amblyopic children were compared with that of age-matched controls. The influence of amblyogenic condition or treatment factors that might predict any decrement in outcome measures was investigated. The relationship between indirect measures of eye movements that are used clinically and eye movement characteristics recorded during reading was examined and the relevance of proficiency in fine motor skills to performance on standardised educational tests was explored in a sub-group of the control children. Methods: Children with amblyopia (n=82; age 8.2 ± 1.3 years) from differing causes (infantile esotropia n=17, acquired strabismus n=28, anisometropia n=15, mixed n=13 and deprivation n=9), and a control group of children (n=106; age 9.5 ± 1.2 years) participated in this study. Measures of visual function included monocular logMAR visual acuity (VA) and stereopsis assessed with the Randot Preschool Stereoacuity test, while fine motor skills were measured using the Visual-Motor Control (VMC) and Upper Limb Speed and Dexterity (ULSD) subtests of the Brunicks-Oseretsky Test of Motor Proficiency. Perceived self esteem was assessed for those children from grade 3 school level with the Harter Self Perception Profile for Children and for those in younger grades (preschool to grade 2) with the Pictorial Scale of Perceived Competence and Acceptance for Young Children. A clinical measure of eye movements was made with the Developmental Eye Movement (DEM) test for those children aged eight years and above. For appropriate case-control comparison of data, the results from amblyopic children were compared with age-matched sub-samples drawn from the group of children with normal vision who completed the tests. Eye movements during reading for comprehension were recorded by the Visagraph infra-red recording system and results of standardised tests of educational performance were also obtained for a sub-set of the control group. Results Amblyopic children (n=82; age 8.2 ± 1.7 years) performed significantly poorer than age-matched control children (n=37; age 8.3 ± 1.3 years) on 9 of 16 fine motor skills sub-items and for the overall age-standardised scores for both VMC and ULSD items (p<0.05); differences were most evident on timed manual dexterity tasks. The underlying aetiology of amblyopia and level of stereoacuity significantly affected fine motor skill performance on both items. However, when examined in a multiple regression model that took into account the inter-correlation between visual characteristics, poorer fine motor skills performance was only associated with strabismus (F1,75 = 5.428; p =0. 022), and not with the level of stereoacuity, refractive error or visual acuity in either eye. Amblyopic children from grade 3 school level and above (n=47; age 9.2 ± 1.3 years), particularly those with acquired strabismus, had significantly lower social acceptance scores than age-matched control children (n=52; age 9.4 ± 0.5 years) (F(5,93) = 3.14; p = 0.012). However, the scores of the amblyopic children were not significantly different to controls for other areas related to self-esteem, including scholastic competence, physical appearance, athletic competence, behavioural conduct and global self worth. A lower social acceptance score was independently associated with a history of treatment with patching but not with a history of strabismus or wearing glasses. Amblyopic children from pre-school to grade 2 school level (n=29; age = 6.6 ± 0.6 years) had similar self-perception scores to their age-matched peers (n=20; age = 6.4 ± 0.5 years). There were no significant differences between the amblyopic (n=39; age 9.1 ± 0.9 years) and age-matched control (n = 42; age = 9.3 ± 0.38 years) groups for any of the DEM outcome measures (Vertical Time, Horizontal Time, Number of Errors and Ratio (Horizontal time/Vertical time)). Performance on the DEM did not significantly relate to measures of VA in either eye, level of binocular function, history of strabismus or refractive error. Developmental Eye Movement test outcome measures Horizontal Time and Vertical Time were significantly correlated with reading rates measured by the Visagraph for both reading for comprehension and naming numbers (r>0.5). Some moderate correlations were also seen between the DEM Ratio and word reading rates as recorded by Visagraph (r=0.37). In children with normal vision, academic scores in mathematics, spelling and reading were associated with measures of fine motor skills. Strongest effect sizes were seen with the timed manual dexterity domain, Upper Limb Speed and Dexterity. Conclusions Amblyopia may have a negative impact on a child’s fine motor skills and an older child’s sense of acceptance by their peers may be influenced by treatment that includes eye patching. Clinical measures of eye movements were not affected in amblyopic children. A number of the outcome measures of the DEM are associated with objective recordings of reading rates, supporting its clinical use for identification of children with slower reading rates. In children with normal vision, proficiency on clinical measures of fine motor skill are associated with outcomes on standardised measures of educational performance. Scores on timed manual dexterity tasks had the strongest association with educational performance. Collectively, the results of this study indicate that, in addition to the reduction in visual acuity and binocular function that define the condition, amblyopes have functional impairment in childhood development skills that underlie proficiency in everyday activities. The study provides support for strategies aimed at early identification and remediation of amblyopia and the co-morbidities that arise from abnormal visual neurodevelopment.
Resumo:
The track allocation problem (TAP) at a multi-track, multi-platform mainline railway station is defined by the station track layout and service timetable, which implies combinations of spatial and temporal conflicts. Feasible solutions are available from either traditional planning or advanced intelligent searching methods and their evaluations with respect to operational requirements are essential for the operators. To facilitate thorough analysis, a timed Coloured Petri Nets (CPN) model is presented here to encapsulate the inter-relationships of the spatial and temporal constraints in the TAP.
Resumo:
Visual impairment is an important contributing factor in falls among older adults, which is one of the leading causes of injury and injury-related death in this population. Visual impairment is also associated with greater disability among older adults, including poorer health-related quality of life, increased frailty and reduced postural stability. The majority of this evidence, however, is based on measures of central visual function, rather than peripheral visual function. As such, there is comparatively limited research on the associations between peripheral visual function, disability and falls, and even fewer studies involving older adults with specific diseases which affect peripheral visual function, the most common of which is glaucoma. Glaucoma is one of the leading causes of irreversible vision loss among older adults, affecting around 3 per cent of adults aged over 60 years. The condition is characterised by retinal nerve fibre loss, primarily affecting peripheral visual function. Importantly, the number of older adults with glaucomatous visual impairment is projected to increase as the ageing population grows. The first component of the thesis examined the cross-sectional association between glaucomatous visual impairment and health-related quality of life (Study 1a), functional status (Study 1b) and postural stability (Study 1c) among older adults. A cohort of 74 community-dwelling adults with glaucoma (mean age 74.2 ± 5.9 years) was recruited and completed a baseline assessment. A number of visual function measures was assessed, including central visual function (visual acuity and contrast sensitivity), motion sensitivity, retinal nerve fibre analysis and monocular and binocular visual field measures (monocular 24-2 and binocular integrated visual fields (IVF): IVF-60 and IVF-120). The analyses focused on the associations between the outcomes measures and severity and location of visual field loss, as this is the primary visual function affected by glaucoma. In Study 1a, we examined the association between visual field loss and health-related quality of life, measured by the Short Form 36-item Health Survey (SF-36). Greater binocular visual field loss, on both IVF measures, was associated with lower SF-36 physical component scores, adjusted for age and gender (Pearson's r =|0.32| to |0.36|, p<0.001). Furthermore, inferior visual field loss was more strongly associated with the SF-36 physical component than superior field loss. No association was found between visual field loss and SF-36 mental component scores. The association between visual field loss and functional status was examined in Study 1b. Functional status outcomes measures included a physical activity questionnaire (Physical Activity Scale for the Elderly, PASE), performance tests (six-minute walk test, timed up and go test and lower leg strength) and an overall functional status score. Significant, but weak, correlations were found between binocular visual field loss and PASE and overall functional status scores, adjusted for age and gender (Pearson's r =|0.24| to |0.33|, p<0.05). Greater inferior visual field loss, independent of superior visual field loss, was significantly associated with poorer physical performance results and lower overall functional status scores. In Study 1c, we examined the association between visual field loss and postural stability, using a swaymeter device which recorded body movement during four conditions: eyes open and closed, on a firm and foam surface. Greater binocular visual field loss was associated with increased postural sway, both on firm and foam surfaces, independent of age and gender (Pearson’s r =|0.44| to |0.46|, p <0.001). Furthermore, inferior visual field was a stronger contributor to postural stability, more so than the superior visual field, particularly on the foam condition with the eyes open. Greater visual field loss was associated with a reduction in the visual contribution to postural sway, which underlies the observed association with postural sway. The second component of the thesis examined the association between severity and location of visual field loss and falls during a 12-month longitudinal follow-up. The number of falls was assessed prospectively using monthly fall calendars. Of the 71 participants who successfully completed the follow up (mean age 73.9 ± 5.7 years), 44% reported one or more falls, and around 20% reported two or more falls. After adjusting for age and gender, every 10 points missed on the IVF-120 increased the rate of falls by 25% (rate ratio 1.25, 95% confidence interval 1.08 - 1.44) or every 5dB reduction in IVF-60 increased the rate of falls by 47% (rate ratio 1.47, 95% confidence interval 1.16 - 1.87). Inferior visual field loss was a significant predictor of falls, more so than superior field loss, highlighting the importance of the inferior visual field area in safe and efficient navigation. Further analyses indicated that postural stability, more so than functional status, may be a potential mediating factor in the relationship between visual field loss and falls. Future research is required to confirm this causal pathway. In addition, the use of topical beta-blocker medications was not associated with an increased rate of falls in this cohort, compared with the use of other topical anti-glaucoma medications. In summary, greater binocular visual field loss among older adults with glaucoma was associated with poorer health-related quality of life in the physical domain, reduced functional status, greater postural instability and higher rates of falling. When the location of visual field loss was examined, inferior visual field loss was consistently more strongly associated with these outcomes than superior visual field loss. Insights gained from this research improve our understanding of the association between glaucomatous visual field loss and disability, and its link with falls among older adults. The clinical implications of this research include the need to include visual field screening in falls risk assessments among older adults and to raise awareness of these findings to eye care practitioners and adults with glaucoma. The findings also assist in developing further research to examine strategies to reduce disability and prevent falls among older adults with glaucoma to promote healthy ageing and independence for these individuals.
Resumo:
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Resumo:
Tobacco yellow dwarf virus (TbYDV, family Geminiviridae, genus Mastrevirus) is an economically important pathogen causing summer death and yellow dwarf disease in bean (Phaseolus vulgaris L.) and tobacco (Nicotiana tabacum L.), respectively. Prior to the commencement of this project, little was known about the epidemiology of TbYDV, its vector and host-plant range. As a result, disease control strategies have been restricted to regular poorly timed insecticide applications which are largely ineffective, environmentally hazardous and expensive. In an effort to address this problem, this PhD project was carried out in order to better understand the epidemiology of TbYDV, to identify its host-plant and vectors as well as to characterise the population dynamics and feeding physiology of the main insect vector and other possible vectors. The host-plants and possible leafhopper vectors of TbYDV were assessed over three consecutive growing seasons at seven field sites in the Ovens Valley, Northeastern Victoria, in commercial tobacco and bean growing properties. Leafhoppers and plants were collected and tested for the presence of TbYDV by PCR. Using sweep nets, twenty-three leafhopper species were identified at the seven sites with Orosius orientalis the predominant leafhopper. Of the 23 leafhopper species screened for TbYDV, only Orosius orientalis and Anzygina zealandica tested positive. Forty-two different plant species were also identified at the seven sites and tested. Of these, TbYDV was only detected in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. Using a quadrat survey, the temporal distribution and diversity of vegetation at four of the field sites was monitored in order to assess the presence of, and changes in, potential host-plants for the leafhopper vector(s) and the virus. These surveys showed that plant composition and the climatic conditions at each site were the major influences on vector numbers, virus presence and the subsequent occurrence of tobacco yellow dwarf and bean summer death diseases. Forty-two plant species were identified from all sites and it was found that sites with the lowest incidence of disease had the highest proportion of monocotyledonous plants that are non hosts for both vector and the virus. In contrast, the sites with the highest disease incidence had more host-plant species for both vector and virus, and experienced higher temperatures and less rainfall. It is likely that these climatic conditions forced the leafhopper to move into the irrigated commercial tobacco and bean crop resulting in disease. In an attempt to understand leafhopper species diversity and abundance, in and around the field borders of commercially grown tobacco crops, leafhoppers were collected from four field sites using three different sampling techniques, namely pan trap, sticky trap and sweep net. Over 51000 leafhopper samples were collected, which comprised 57 species from 11 subfamilies and 19 tribes. Twentythree leafhopper species were recorded for the first time in Victoria in addition to several economically important pest species of crops other than tobacco and bean. The highest number and greatest diversity of leafhoppers were collected in yellow pan traps follow by sticky trap and sweep nets. Orosius orientalis was found to be the most abundant leafhopper collected from all sites with greatest numbers of this leafhopper also caught using the yellow pan trap. Using the three sampling methods mentioned above, the seasonal distribution and population dynamics of O. orientalis was studied at four field sites over three successive growing seasons. The population dynamics of the leafhopper was characterised by trimodal peaks of activity, occurring in the spring and summer months. Although O. orientalis was present in large numbers early in the growing season (September-October), TbYDV was only detected in these leafhoppers between late November and the end of January. The peak in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and was also associated with warmer temperatures and lower rainfall. To understand the feeding requirements of Orosius orientalis and to enable screening of potential control agents, a chemically-defined artificial diet (designated PT-07) and feeding system was developed. This novel diet formulation allowed survival for O. orientalis for up to 46 days including complete development from first instar through to adulthood. The effect of three selected plant derived proteins, cowpea trypsin inhibitor (CpTi), Galanthus nivalis agglutinin (GNA) and wheat germ agglutinin (WGA), on leafhopper survival and development was assessed. Both GNA and WGA were shown to reduce leafhopper survival and development significantly when incorporated at a 0.1% (w/v) concentration. In contrast, CpTi at the same concentration did not exhibit significant antimetabolic properties. Based on these results, GNA and WGA are potentially useful antimetabolic agents for expression in genetically modified crops to improve the management of O. orientalis, TbYDV and the other pathogens it vectors. Finally, an electrical penetration graph (EPG) was used to study the feeding behaviour of O. orientalis to provide insights into TbYDV acquisition and transmission. Waveforms representing different feeding activity were acquired by EPG from adult O. orientalis feeding on two plant species, Phaseolus vulgaris and Nicotiana tabacum and a simple sucrose-based artificial diet. Five waveforms (designated O1-O5) were observed when O. orientalis fed on P. vulgaris, while only four (O1-O4) and three (O1-O3) waveforms were observed during feeding on N. tabacum and the artificial diet, respectively. The mean duration of each waveform and the waveform type differed markedly depending on the food source. This is the first detailed study on the tritrophic interactions between TbYDV, its leafhopper vector, O. orientalis, and host-plants. The results of this research have provided important fundamental information which can be used to develop more effective control strategies not only for O. orientalis, but also for TbYDV and other pathogens vectored by the leafhopper.
Resumo:
Background: Falls are a major health and injury problem for people with Parkinson disease (PD). Despite the severe consequences of falls, a major unresolved issue is the identification of factors that predict the risk of falls in individual patients with PD. The primary aim of this study was to prospectively determine an optimal combination of functional and disease-specific tests to predict falls in individuals with PD. ----- ----- Methods: A total of 101 people with early-stage PD undertook a battery of neurologic and functional tests in their optimally medicated state. The tests included Tinetti, Berg, Timed Up and Go, Functional Reach, and the Physiological Profile Assessment of Falls Risk; the latter assessment includes physiologic tests of visual function, proprioception, strength, cutaneous sensitivity, reaction time, and postural sway. Falls were recorded prospectively over 6 months. ----- ----- Results: Forty-eight percent of participants reported a fall and 24% more than 1 fall. In the multivariate model, a combination of the Unified Parkinson's Disease Rating Scale (UPDRS) total score, total freezing of gait score, occurrence of symptomatic postural orthostasis, Tinetti total score, and extent of postural sway in the anterior-posterior direction produced the best sensitivity (78%) and specificity (84%) for predicting falls. From the UPDRS items, only the rapid alternating task category was an independent predictor of falls. Reduced peripheral sensation and knee extension strength in fallers contributed to increased postural instability. ----- ----- Conclusions: Falls are a significant problem in optimally medicated early-stage PD. A combination of both disease-specific and balance- and mobility-related measures can accurately predict falls in individuals with PD.
Resumo:
Purpose: To examine the relationship between visual impairment and functional status in a community-dwelling sample of older adults with glaucoma. Methods: This study included 74 community-dwelling older adults with open-angle glaucoma (aged 74 ± 6 years). Assessment of central vision included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from merged monocular Humphrey Field Analyser visual field plots. Functional status outcome measures included physical performance tests (6-min walk test, timed up and go test and lower limb strength), a physical activity questionnaire (Physical Activity Scale for the Elderly) and an overall functional status score. Correlation and linear regression analyses, adjusting for age and gender, examined the association between visual impairment and functional status outcomes. Results: Greater levels of visual impairment were significantly associated with lower levels of functional status among community-dwelling older adults with glaucoma, independent of age and gender. Specifically, lower levels of visual function were associated with slower timed up and go performance, weaker lower limb strength, lower self-reported physical activity, and lower overall functional status scores. Of the components of vision examined, the inferior visual field and contrast factors were the strongest predictors of these functional outcomes, whereas the superior visual field factor was not related to functional status. Conclusions: Greater visual impairment, particularly in the inferior visual field and loss of contrast sensitivity, was associated with poorer functional status among older adults with glaucoma. The findings of this study highlight the potential links between visual impairment and the onset of functional decline. Interventions which promote physical activity among older adults with glaucoma may assist in preventing functional decline, frailty and falls, and improve overall health and well-being.
Resumo:
In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion process-based mechanisms motivated by applications from cell biology. Previous investigations that focussed on relaxing the independence assumption have been limited to studying initially-uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterised by moving fronts. Here we propose generalised methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.