942 resultados para time-dependent local density approximation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the behavior of charged particles immersed in a peculiar configuration of magnetic fields, which has a main constant field B(0) and a superimposed, transversal perturbation field B(1) sin(omega(p)t), with B(1) << B(0). By taking Cartesian coordinates and placing B(0) along the z axis and B(1) sin (omega(p)t) on the x axis, an analytical solution for y(t) may be obtained by solving an integrodifferential equation. Besides, the solution z(t) also exhibits a very interesting dynamics, and the entire system is conditioned by resonances between the particle orbit frequencies and the frequency of the magnetic transversal perturbation, omega(p). In this work we also discuss numerical simulations for the related particle trajectories, as well as potential applications in the context of separation phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter new aspects of string theory propagating in a pp-wave time dependent background with a null singularity are explored. It is shown the appearance of a 2d entanglement entropy dynamically generated by the background. For asymptotically flat observers, the vacuum close to the singularity is unitarily inequivalent to the vacuum at tau = -infinity and it is shown that the 2d entanglement entropy diverges close to this point. As a consequence. The positive time region is inaccessible for observers in tau = -infinity. For a stationary measure, the vacuum at finite time is seen by those observers as a thermal state and the information loss is encoded as a heat bath of string states. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties for a classical particle confined in an infinitely deep box of potential containing a periodically oscillating square well are studied. The dynamics of the system is described by using a two-dimensional non-linear area-preserving map for the variables energy and time. The phase space is mixed and the chaotic sea is described using scaling arguments. Scaling exponents are obtained as a function of all the control parameters, extending the previous results obtained in the literature. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties for a Lorentz gas were studied considering both static and time-dependent boundaries. For the static case, it was confirmed that the system has a chaotic component characterized with a positive Lyapunov exponent. For the time-dependent perturbation, the model was described using a four-dimensional nonlinear map. The behaviour of the average velocity is considered in two different situations: (i) non-dissipative and (ii) dissipative dynamics. Our results confirm that unlimited energy growth is observed for the non-dissipative case. However, and totally new for this model, when dissipation via inelastic collisions is introduced, the scenario changes and the unlimited energy growth is suppressed, thus leading to a phase transition from unlimited to limited energy growth. The behaviour of the average velocity is described using scaling arguments. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 mu m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.