682 resultados para tapered crossed subwavelength gratings
Resumo:
By considering all possible high order diffracted waves, the authors investigate the spectral response of two-dimensional gratings for quantum well infrared photodetectors (QWIPs). A new method is proposed that using long period gratings may improve grating quality and reduce the resulting cross talk in grating-coupled QWIPs. A sensitivity analysis indicates that the influence of variation of the grating constant on the coupling efficiency is less sensitive for the long period gratings than for the short ones. A large coupling efficiency has been demonstrated for long period gratings. The calculated wide grating response spectra are in good agreement with the experiment result. (C) 1996 American Institute of Physics.
Resumo:
DFB lasers with continuously and arbitrarily chirped gratings of ultrahigh spatial precision are implemented by a method we proposed recently, using bent waveguides on homogeneous grating fields. Choosing individual bending functions we generate special chirping functions and obtain additional degrees of freedom to tailor and improve specific device performances, We present two applications for lasers showing several improved device properties and the effectiveness of our method, First, we implement continuously distributed phase-shifted lasers, revealing a considerably reduced photon pile-up, higher single-longitudinal mode stability, higher output power, lower linewidth, and higher yield than conventional abruptly phase-shifted lasers, Second, a novel tuning principle is applied in chirped multiple-section DFB lasers, showing 5.5-nm wavelength tuning, without any gaps, maintaining high side-mode suppression.
Resumo:
We have implemented and studied a new type of tunable multiple-section semiconductor distributed feedback (DFB) laser using tailored chirped DFB gratings. Arbitrarily and continuously chirped DFB gratings are defined by bent waveguides on homogeneous grating fields with ultrahigh spatial precision, The mathematical bending functions are optimized in this case to provide enlarged wavelength tuning ranges. We present the results of model calculations, the technological device realization and experimental results of the DFB laser characterization e.g. a tuning range of 5.5 mm without wavelength gaps and high side mode suppression ratio.
Resumo:
The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.
Resumo:
A novel structure of spot-size converter is designed to allow low loss and large alignment tolerance between single-mode rib waveguide devices and fiber arrays theoretically. The spot-size converter consists of a tapered rib core region and a double-cladding region. Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region. The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular. A novel,easy method of fabricating tapered rib spot-size converter based on silicon-on-insulator material is proposed.
Resumo:
The authors have designed and fabricated 2x2 parabolically tapered MMI coupler with large cross-section and large space between difference ports using Silicon-on-Insulator ( SOI) technology. The devices demonstrate a minimum uniformity of 0.8dB and 30% shorter than the straight MMI coupler.
Resumo:
1.5 mu m DFB LD butt-joint integrated with vertical tapered spotsize converter was fabricated by LP-MOVPE. The vertical far field angle (FWHM) was decreased from 34degrees to 10degrees the threshold currents was as low as 19.8mA, the output power was 9.6mw at 100mA without HR coating and the SMSR was 35.8dB. The 1-dBm misalignment tolerance was 3.2 mu m, while the counterpart of the device without SSC was 2.2 mu m.
Resumo:
The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal-insulator-metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.