319 resultados para swd: Stilpluralismus
Resumo:
Image-based Relighting (IBRL) has recently attracted a lot of research interest for its ability to relight real objects or scenes, from novel illuminations captured in natural/synthetic environments. Complex lighting effects such as subsurface scattering, interreflection, shadowing, mesostructural self-occlusion, refraction and other relevant phenomena can be generated using IBRL. The main advantage of image-based graphics is that the rendering time is independent of scene complexity as the rendering is actually a process of manipulating image pixels, instead of simulating light transport. The goal of this paper is to provide a complete and systematic overview of the research in Imagebased Relighting. We observe that essentially all IBRL techniques can be broadly classified into three categories (Fig. 9), based on how the scene/illumination information is captured: Reflectance function-based, Basis function-based and Plenoptic function-based. We discuss the characteristics of each of these categories and their representative methods. We also discuss about the sampling density and types of light source(s), relevant issues of IBRL.
Resumo:
Interactive ray tracing of non-trivial scenes is just becoming feasible on single graphics processing units (GPU). Recent work in this area focuses on building effective acceleration structures, which work well under the constraints of current GPUs. Most approaches are targeted at static scenes and only allow navigation in the virtual scene. So far support for dynamic scenes has not been considered for GPU implementations. We have developed a GPU-based ray tracing system for dynamic scenes consisting of a set of individual objects. Each object may independently move around, but its geometry and topology are static.
Resumo:
This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.
Resumo:
This paper investigates the use of virtual reality (VR) technologies to facilitate the analysis of plant biological data in distinctive steps in the application pipeline. Reconstructed three-dimensional biological models (primary polygonal models) transferred to a virtual environment support scientists' collaborative exploration of biological datasets so that they obtain accurate analysis results and uncover information hidden in the data. Examples of the use of virtual reality in practice are provided and a complementary user study was performed.
Resumo:
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement capture highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of six widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondence. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing.
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.
Resumo:
We present a new approach to diffuse reflectance estimation for dynamic scenes. Non-parametric image statistics are used to transfer reflectance properties from a static example set to a dynamic image sequence. The approach allows diffuse reflectance estimation for surface materials with inhomogeneous appearance, such as those which commonly occur with patterned or textured clothing. Material editing is also possible by transferring edited reflectance properties. Material reflectance properties are initially estimated from static images of the subject under multiple directional illuminations using photometric stereo. The estimated reflectance together with the corresponding image under uniform ambient illumination form a prior set of reference material observations. Material reflectance properties are then estimated for video sequences of a moving person captured under uniform ambient illumination by matching the observed local image statistics to the reference observations. Results demonstrate that the transfer of reflectance properties enables estimation of the dynamic surface normals and subsequent relighting combined with material editing. This approach overcomes limitations of previous work on material transfer and relighting of dynamic scenes which was limited to surfaces with regions of homogeneous reflectance. We evaluate our approach for relighting 3D model sequences reconstructed from multiple view video. Comparison to previous model relighting demonstrates improved reproduction of detailed texture and shape dynamics.
Resumo:
This paper presents two studies pertaining to the use of virtual characters applied in clinical forensic rehabilitation of sex offenders. The first study is about the validation of the perceived age of virtual characters designed to simulate primary and secondary sexual character of typical adult and child individuals. The second study puts to use these virtual characters in comparing a group of sex offenders and a group of non deviant individuals on their sexual arousal responses as recorded in virtual immersion. Finally, two clinical vignettes illustrating the use of made-to-measure virtual characters to more closely fit sexual preferences are presented in Discussion.
Resumo:
wo methods for registering laser-scans of human heads and transforming them to a new semantically consistent topology defined by a user-provided template mesh are described. Both algorithms are stated within the Iterative Closest Point framework. The first method is based on finding landmark correspondences by iteratively registering the vicinity of a landmark with a re-weighted error function. Thin-plate spline interpolation is then used to deform the template mesh and finally the scan is resampled in the topology of the deformed template. The second algorithm employs a morphable shape model, which can be computed from a database of laser-scans using the first algorithm. It directly optimizes pose and shape of the morphable model. The use of the algorithm with PCA mixture models, where the shape is split up into regions each described by an individual subspace, is addressed. Mixture models require either blending or regularization strategies, both of which are described in detail. For both algorithms, strategies for filling in missing geometry for incomplete laser-scans are described. While an interpolation-based approach can be used to fill in small or smooth regions, the model-driven algorithm is capable of fitting a plausible complete head mesh to arbitrarily small geometry, which is known as "shape completion". The importance of regularization in the case of extreme shape completion is shown.
Resumo:
This article describes a series of experiments which were carried out to measure the sense of presence in auditory virtual environments. Within the study a comparison of self-created signals to signals created by the surrounding environment is drawn. Furthermore, it is investigated if the room characteristics of the simulated environment have consequences on the perception of presence during vocalization or when listening to speech. Finally the experiments give information about the influence of background signals on the sense of presence. In the experiments subjects rated the degree of perceived presence in an auditory virtual environment on a perceptual scale. It is described which parameters have the most influence on the perception of presence and which ones are of minor influence. The results show that on the one hand an external speaker has more influence on the sense of presence than an adequate presentation of one’s own voice. On the other hand both room reflections and adequately presented background signals significantly increase the perceived presence in the virtual environment.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a handheld video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a stateof- the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-theart tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.
Resumo:
The article presents the design process of intelligent virtual human patients that are used for the enhancement of clinical skills. The description covers the development from conceptualization and character creation to technical components and the application in clinical research and training. The aim is to create believable social interactions with virtual agents that help the clinician to develop skills in symptom and ability assessment, diagnosis, interview techniques and interpersonal communication. The virtual patient fulfills the requirements of a standardized patient producing consistent, reliable and valid interactions in portraying symptoms and behaviour related to a specific clinical condition.
Resumo:
Seit Mitte der 1990er Jahre werden „Wetterderivate“ als neues Instrument zum Management wetterbedingter Mengenrisiken diskutiert. Im Gegensatz zu schadensbezogenen Versicherungen erfolgt der Hedge bei Wetterderivaten durch an Wetterindizes (Niederschlagssummen, Temperatursummen etc.) gekoppelte Zahlungen, die an einer festgelegten Referenzwetterstation gemessen werden. Im vorliegenden Beitrag wird ein Risk-Programming Ansatz vorgestellt, mit dem die Zahlungsbereitschaft landwirtschaftlicher Unternehmen für Risikomanagementinstrumente im Allgemeinen und Wetterderivate im Speziellen bestimmt werden kann. Dabei wird sowohl das betriebspezifische Risikoreduzierungspotenzial des betrachteten Instruments als auch die individuelle Risikoakzeptanz des Entscheiders berücksichtigt. Die exemplarische Anwendung des Ansatzes auf ein Brandenburger Landwirtschaftsunternehmen zeigt, dass selbst für einen standardisierten Optionskontrakt, der sich auf die an der Wetterstation Berlin-Tempelhof gemessenen Niederschläge bezieht, eine relevante Zahlungsbereitschaft seitens des Landwirts besteht. Diese Zahlungsbereitschaft ist so hoch, dass der Anbieter sogar einen Aufpreis verlangen könnte, der über dem traditioneller Versicherungen liegt. Angesichts der gegenüber schadensbezogenen Versicherungen deutlich geringeren Transaktionskosten deutet dies auf ein erhebliches Handelspotenzial für Wetterderivate hin.
Resumo:
Complementary to automatic extraction processes, Virtual Reality technologies provide an adequate framework to integrate human perception in the exploration of large data sets. In such multisensory system, thanks to intuitive interactions, a user can take advantage of all his perceptual abilities in the exploration task. In this context the haptic perception, coupled to visual rendering, has been investigated for the last two decades, with significant achievements. In this paper, we present a survey related to exploitation of the haptic feedback in exploration of large data sets. For each haptic technique introduced, we describe its principles and its effectiveness.