912 resultados para steroid hormone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of different LH-like hormones, such as hCG, PMSG/equine (e) CG, ovine (o) LH, eLH, and rat (r) LH, to bind to and stimulate steroidogenesis in two types of rat gonadal cells was studied under the same experimental conditions. In both Leydig and granulosa cells, the maximal steroidogenic responses elicited by optimal doses of different LHs present during a 2-h incubation were comparable. However, if the cells were exposed to the different LHs for a brief period and then subjected to interference with hormone action by removing the unbound hormone from the medium by washing or adding specific antisera, differences were observed in the amount of steroid produced during subsequent incubation in hormone-free medium. Thus, in the case of hCG, either of these procedures carried out at 15 or 30 min of incubation had little inhibitory effect on the amount of steroid produced at 2 h, the latter being similar to that produced by cells incubated in the continued presence of hCG for 2 h. With eCG and rLH, the effect was dramatic, in that there was a total inhibition of subsequent steroidogenic response. In cells exposed to eLH and oLH, inhibition of subsequent steroidogenesis due to either removal of the free-hormone or addition of specific antisera at 15 or 30 min was only partial. Although all of the antisera used were equally effective in inhibiting the steroidogenic response to respective gonadotropins when added along with hormones at the beginning of incubation, differences were observed in the degree of inhibition of this response when the same antisera were added at later times of incubation. Thus, when antisera were added 60 min after the hormone, the inhibition of steroidogenesis was total (100%) for eCG, partial (10–40%) for eLH and oLH, and totally lacking in cells treated with hCG. From this, it appears that hCG bound to the receptor probably becomes unavailable for binding to its antibody with time, while in the case of eCG and other LHs used, the antibody can still inhibit the biological activity of the hormone. Studies with 125I-labeled hormones further supported the conclusion that hCG differs from all other LHs in being most tightly bound and, hence, least dissociable, while eCG and rLH dissociate most readily; oLH and eLH can be placed in between these hormones in the extent of their dissociability. (Endocrinology 116: 597–603,1985)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects on follicle stimulating hormone (FSH) secretion and dominant follicle (OF) growth, of treatment of Bos indicus heifers with different combinations of intra-vaginal progesterone releasing devices (IPRD), oestradiol benzoate (ODB), PGF(2 alpha), and eCG. Two-year-old Brahman (BN; n=30) and Brahman-cross (BNX; n=34) heifers were randomly allocated to three IPRD-treatments: (i) standard-dose IPRD [CM 1.56 g; 1.56 g progesterone (P-4); n = 17]; (ii) half-dose IPRD (CM 0.78 g; 0.78 g p(4); n=15); (iii) half-dose IPRD + 300 IU eCG at IPRD removal (CM 0.78 g+G; n=14); and, (iv) non-IPRD control (2 x PGF(2 alpha); n=18) 500 mu g cloprostenol on Days -16 and -2. IPRD-treated heifers received 250 mu g PGF(2 alpha) at IPRD insertion (Day 10) and IPRD removal (Day -2) and 1 mg ODB on Day -10 and Day -1. Follicular dynamics were monitored daily by trans-rectal ultrasonography from Day -10 to Day 1. Blood samples for determination of P-4 were collected daily and samples for FSH determination were collected at 12 h intervals from Day -9 to Day -2. A significant surge in concentrations of FSH was observed in the 2 x PGF(2 alpha), treatment 12 h prior and 48 h after follicular wave emergence, but not in the IPRD-treated heifers. Estimated mean concentrations of total plasma P-4 during the 8 days of IPRD insertion was greater (P<0.001) in the CM 1.56 g P-4 treated heifers compared to the CM 0.78 g P-4 treated heifers (18.38 ng/ml compared with 11.09 ng/ml, respectively). A treatment by genotype interaction (P=0.036) was observed in the mean plasma P4 concentration in heifers with no CL during IPRD insertion, whereby BN heifers in the CM 1.56 g treatment had greater plasma P-4 than the BNX heifers on Days-9, -7, -6, -5, and -4. However, there was no genotype effect in the CM 0.78 g +/- G or the 2 x PGF(2 alpha) treatment. Treatment had no effect on the DF growth from either day of wave emergence (P=0.378) or day of IPRD removal (P=0.780) to ovulation. This study demonstrates that FSH secretion in B. indicus heifers treated with a combination of IPRD's and ODB to synchronise ovulation was suppressed during the period of IPRD insertion but no significant effect on growth of the DF was observed. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ovary of the immature female rat is comprised of primary and medium-sized preantral follicles. Upon stimulation with FSH or PMSG, the cathepsin-D activity, a representative lysosomal enzyme of granulosa cells, is reduced by 50% (P < 0.01). 17β-Estradiol at the doses tried was unable to mimic this effect. Blockade of steroidogenesis with cyanoketone also had no effect on the cathepsin-D activity of isolated granulosa cells. Dihydrotestosterone (DHT), however, at a dose of 1 mg/rat was able to inhibit PMSG's tropic action. It brought about an increase in cathepsin-D activity and reduction in steroidogenic activity of isolated granulosa cells. The atretogenic activity of DHT could be relieved by supplementation with exogenous FSH. DHT was observed to significantly reduce (P < 0.01) endogenous FSH and LH levels within 12–18 h of its injection suggesting that its atretic effect was due to its action at the pituitary rather than the gonad. In addition to the above the ability of 15 IU of PMSG to reduce cathepsin-D activity of granulosa cells was also significantly reduced (P < 0.01) if endogenous FSH was neutralized by a specific FSH antiserum. The present study suggests that as far as small and medium-sized primary and preantral follicles are concerned, FSH lack is the essential signal for onset of atresia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rabbit antiserum specific to ovine luteinizing hormone free of contaminating antibodies to nonspecific proteins and FSH was administered to adult, intact rats at a dose of 0.1 and 0.2 ml/day for five days. LHAS had no effect on the weights of the epididymis but decreased their secretory activity to castrate level. Administration of 0.2 ml of LHAS or castration resulted in a marked and comparable reduction in the weights and secretory activity of the accessory glands. LHAS, even at a lower dose (0.1 ml/day), caused a significant reduction in the content of sialic acid in the vas deferons and Cowper's glands. These results are discussed in relation to the factors that regulate the functions of the epididymis and accessory glands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a new synthesis of 2,6,7,7a-tetrahydro-lβ-hydroxy-4-formyl-7a-methylindene was undertaken involving the preparation of 2,6,7,7a-tetra-hydro-1β-hydroxy-4-methoxymethyl-7a-methylindene because of the erratic yield in the last oxidation step of the reported synthesis of the former compound. Although various attempts to prepare the latter were not successful, interesting rearrangement products, the dienone, 5,6,7,7a-tetrahydro-4,7a-dimethyl-5H-indene-1,5-dione and the tricyclic keto alcohol, 2,6-diketo-3-methyltricyclo(5,2,1,0)decan-8-ol, were obtained, the structures of which have been proved by spectral data. Mechanisms for the formation of these products have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of receptor-bound unlabelled physiologically active lutropin (luteinizing hormone, LH) was possible by a modified radioimmunoassay. The conventional radioimmunoassayconducted at 4°C was inadequate, whereas the modified assay performed at 37'C could measure receptor-bound lutropin. The radioimmunoassay at 37'C takes only 36h for completion compared with 5-7 days at 4°C. The sensitivity and range of dose-response curves are, however, unaltered. The validity of the technique was established by a number of criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of a monkey antiserum to ovine LH to interrupt gestation in monkeys has been established. The antiserum has been shown to neutralize monkey pituitary LH by a number of criteria. The significant increase in serum progesterone level on day 23 of the cycle shown by mated monkeys has been used as an index of pregnancy. Injection of LH antiserum during the first week of missed menses (day 29–31 of cycle or day 18–20 of gestation) causes significant reduction in serum levels of progesterone followed by onset of bleeding which is interpreted as the termination of gestation. The same dose of non-immune serum given to monkeys during the same period does not have any deleterious effect on the progress of pregnancy. The antiserum-treated animals after the termination of gestation, resume cyclicity. Injection of antiserum after day 25 of gestation does not bring about termination of pregnancy. It is suggested that by using antisera raised in humans to ovine LH, this method may be developed as a fertility control measure in humans.

Relevância:

20.00% 20.00%

Publicador: