918 resultados para spectral shaping
Resumo:
New 18-membered cyclotriphosphazene-containing macrocycles 7-10 were obtained by 1 + 1 condensation reaction of dispiro-N3P3(C12H8O2)(2)((N(Me)N=CH)(2) N4C20H26)] (2) with N,N'-dimethyl-ethylenediamine-1,4-diyldimethylenebis(4-methyl-2-formylph enol) (3), N,N'-dimethyl-ethylenediamine-1,4-diyldimethylenebis(4,5-dimethyl-2-form ylphenol) (4), N,N'-dimethyl-ethylenediamine-1,4-diyldimethylenebis(5-chloro-2-formylph enol) (5) and N,N'-dimethyl-ethylenediamine-1,4-diyldimethylenebis(5-bromo-2-formylphe nol) (6), respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a spectral finite element formulation for uniform and tapered rotating CNT embedded polymer composite beams. The exact solution to the governing differential equation of a rotating Euler-Bernoulli beam with maximum centrifugal force is used as an interpolating function for the spectral element formulation. Free vibration and wave propagation analysis is carried out using the formulated spectral element. The present study shows the substantial effect of volume fraction and L/D ratio of CNTs in a beam on the natural frequency, impulse response and wave propagation characteristics of the rotating beam. It is found that the CNTs embedded in the matrix can make the rotating beam non-dispersive in nature at higher rotation speeds. Embedded CNTs can significantly alter the dynamics of polymer-nanocomposite beams. The results are also compared with those obtained for carbon fiber reinforced laminated composite rotating beams. It is observed that CNT reinforced rotating beams are superior in performance compared to laminated composite rotating beams. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Tert-butyl 2,2-bis(2,4-dinitrophenyl)ethanoate was prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, tert-butyl 3-oxobutanoate and triethylamine. Acetyl group in tert-butyl 3-oxobutanoate has cleaved off during the formation of the title molecule. UV-VIS, IR, 1H NMR, 13C NMR, Proton-Proton COSY data and single crystal XRD results support the proposed structure. Flammability test, impact sensitivity test and TG/DTA studies at different heating rates on the synthesized molecule imply that it is an insensitive high energy density material.
Resumo:
Let G be the group . For this group we prove a version of Schwartz's theorem on spectral analysis for the group G. We find the sharp range of Lebesgue spaces L (p) (G) for which a smooth function is not mean periodic unless it is a cusp form. Failure of the Schwartz-like theorem is also proved when C (a)(G) is replaced by L (p) (G) with suitable p. We show that the last result is linked with the failure of the Wiener-tauberian theorem for G.
Resumo:
We derive exact expressions for the zeroth and the first three spectral moment sum rules for the retarded Green's function and for the zeroth and the first spectral moment sum rules for the retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local on-site repulsion and the chemical potential are time-dependent, and in the presence of an external time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend on expectation values that cannot be determined simply from parameters in the Hamiltonian like the interaction strength and chemical potential but require knowledge of equal-time many-body expectation values from some other source. We show how one can approximately evaluate these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion in powers of the hopping divided by the interaction. We compare the exact moment relations to the calculated moments of spectral functions determined from a variety of different numerical approximations and use them to benchmark their accuracy. DOI: 10.1103/PhysRevA.87.013628
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
We present a novel approach to represent transients using spectral-domain amplitude-modulated/frequency -modulated (AM-FM) functions. The model is applied to the real and imaginary parts of the Fourier transform (FT) of the transient. The suitability of the model lies in the observation that since transients are well-localized in time, the real and imaginary parts of the Fourier spectrum have a modulation structure. The spectral AM is the envelope and the spectral FM is the group delay function. The group delay is estimated using spectral zero-crossings and the spectral envelope is estimated using a coherent demodulator. We show that the proposed technique is robust to additive noise. We present applications of the proposed technique to castanets and stop-consonants in speech.
Resumo:
Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We analyze the spectral zero-crossing rate (SZCR) properties of transient signals and show that SZCR contains accurate localization information about the transient. For a train of pulses containing transient events, the SZCR computed on a sliding window basis is useful in locating the impulse locations accurately. We present the properties of SZCR on standard stylized signal models and then show how it may be used to estimate the epochs in speech signals. We also present comparisons with some state-of-the-art techniques that are based on the group-delay function. Experiments on real speech show that the proposed SZCR technique is better than other group-delay-based epoch detectors. In the presence of noise, a comparison with the zero-frequency filtering technique (ZFF) and Dynamic programming projected Phase-Slope Algorithm (DYPSA) showed that performance of the SZCR technique is better than DYPSA and inferior to that of ZFF. For highpass-filtered speech, where ZFF performance suffers drastically, the identification rates of SZCR are better than those of DYPSA.
Resumo:
Transient signals such as plosives in speech or Castanets in audio do not have a specific modulation or periodic structure in time domain. However, in the spectral domain they exhibit a prominent modulation structure, which is a direct consequence of their narrow time localization. Based on this observation, a spectral-domain AM-FM model for transients is proposed. The spectral AM-FM model is built starting from real spectral zero-crossings. The AM and FM correspond to the spectral envelope (SE) and group delay (GD), respectively. Taking into account the modulation structure and spectral continuity, a local polynomial regression technique is proposed to estimate the GD function from the real spectral zeros. The SE is estimated based on the phase function computed from the estimated GD. Since the GD estimation is parametric, the degree of smoothness can be controlled directly. Simulation results based on synthetic transient signals generated using a beta density function are presented to analyze the noise-robustness of the SEGD model. Three specific applications are considered: (1) SEGD based modeling of Castanet sounds; (2) appropriateness of the model for transient compression; and (3) determining glottal closure instants in speech using a short-time SEGD model of the linear prediction residue.
Resumo:
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.
Resumo:
A detalied study of the maonthly Convery river flows at the krishna raja sagara (KRS) reservoir is carried out by using the techniques of spectral analysis. The correlogram and power spectrum ate platted and used to identify the peridiocities inherent in the monthly inflows. The statistical significance of these periodicities is tested. Apart from the periodiocities at 12 months and 6 months, a significant of periodicity of 4 month was also observed in the monthly inflows. The analysis prepares ground for developing an appropriate stochastic model for the item series of the monthly flows.
Resumo:
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements.
Resumo:
Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mixture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover (LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data, the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aqueous dispersions of graphene oxide (GO) exhibit strong pH-dependent fluorescence in the visible that originates, in part, from the oxygenated functionalities present. Here we examine the spectral migration on nanosecond time-scales of the pH dependent features in the fluorescence spectra. We show, from time-resolved emission spectra (TRES) constructed from the wavelength dependent fluorescence decay curves, that the migration is associated with excited state proton transfer. Both `intramolecular' and `intermolecular' transfer involving the quasi-molecular oxygenated aromatic fragments are observed. As a prerequisite to the time-resolved measurements, we have correlated the changes in the steady state fluorescence spectra with the sequence of dissociation events that occur in GO dispersions at different values of pH.