997 resultados para sea salt


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999–2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ODP Site 1089 is optimally located in order to monitor the occurrence of maxima in Agulhas heat and salt spillage from the Indian to the Atlantic Ocean. Radiolarian-based paleotemperature transfer functions allowed to reconstruct the climatic history for the last 450 kyr at this location. A warm sea surface temperature anomaly during Marine Isotope Stage (MIS) 10 was recognized and traced to other oceanic records along the surface branch of the global thermohaline (THC) circulation system, and is particularly marked at locations where a strong interaction between oceanic and atmospheric overturning cells and fronts occurs. This anomaly is absent in the Vostok ice core deuterium, and in oceanic records from the Antarctic Zone. However, it is present in the deuterium excess record from the Vostok ice core, interpreted as reflecting the temperature at the moisture source site for the snow precipitated at Vostok Station. As atmospheric models predict a subtropical Indian source for such moisture, this provides the necessary teleconnection between East Antarctica and ODP Site 1089, as the subtropical Indian is also the source area of the Agulhas Current, the main climate agent at our study location. The presence of the MIS 10 anomaly in the delta13C foraminiferal records from the same core supports its connection to oceanic mechanisms, linking stronger Agulhas spillover intensity to increased productivity in the study area. We suggest, in analogy to modern oceanographic observations, this to be a consequence of a shallow nutricline, induced by eddy mixing and baroclinic tide generation, which are in turn connected to the flow geometry, and intensity, of the Agulhas Current as it flows past the Agulhas Bank. We interpret the intensified inflow of Agulhas Current to the South Atlantic as responding to the switch between lower and higher amplitude in the insolation forcing in the Agulhas Current source area. This would result in higher SSTs in the Cape Basin during the glacial MIS 10, due to the release into the South Atlantic of the heat previously accumulating in the subtropical and equatorial Indian and Pacific Ocean. If our explanation for the MIS 10 anomaly in terms of an insolation variability switch is correct, we might expect that a future Agulhas SSST anomaly event will further delay the onset of next glacial age. In fact, the insolation forcing conditions for the Holocene (the current interglacial) are very similar to those present during MIS 11 (the interglacial preceding MIS 10), as both periods are characterized by a low insolation variability for the Agulhas Current source area. Natural climatic variability will force the Earth system in the same direction as the anthropogenic global warming trend, and will thus lead to even warmer than expected global temperatures in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment cores, mainly push-box samples, from a channel system of the Kiel Bay are described. The channel system, of glacial and fluviatile origin, is important for the distribution of heavy, salt-rich water entering from the North Sea through the Great Belt, Sediment erosion and transport in the channels is due entirely to currents, because the bottom lies too deep for wave action. The sediments of these channels proude information about current velocities and their frequencies. Grain-size, minor sediment structures and thickness of the sediments vary remarkably. Nevertheless, for those parts of the channels where stronger currents occur, some typical features can be shown. These include: small thickness of the marine sediments, erosional effects upon the underlying sediments, and poor sorting of the sediments, whereby fine and coarse fractions are mixed very intensively. Besides strong currents which effect the bottom configuration and deposits in the Fehmarn Belt, there must exist longer periods of low current action upon the bottom, although current measurements show that current velocities higher than 50 cm/sec at some meters above the bottom occur frequently during the year. In the channel to the west of the southern mouth of Great Belt, coarse sediments were found only in elongate, deep throughs within the channels. This is believed to be due to an acceleration of the entering tongues of heavy water as they flow downslope into the throughs. Minor structures of two sediment cores were made visible by X-ray photographs. These showed that the mixing of sand and clayey material is due partly to bottom organisms and that the mud, which appears 'homogeneous' to the bare eye, is built up of fine wavy laminae which are also partly destroyed by boring animals. At another location in the channel system, there was found a thin finegrained layer of marine sediment resting upon peat. Palynological dating of the peat shows that very little older sediment could have been eroded. The current velocities, therefore, must be too low for the movement of coarse material and erosion, but too high to allow the Sedimentation of a lot of fine-grained material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice-sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding-line, and iii) seasonal open-marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal 44 yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10-12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1,600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he separate roles of oceanic heat advection and orbital forcing on influencing early Holocene temperature variability in the eastern Nordic Seas is investigated. The effect of changing orbital forcing on the ocean temperatures is tested using the 1DICE model, and the 1DICE results are compared with new and previously published temperature reconstructions from a transect of five cores located underneath the pathway of Atlantic water, from the Faroe-Shetland Channel in the south to the Barents Sea in the north. The stronger early Holocene summer insolation at high northern latitudes increased the summer mixed layer temperatures, however, ocean temperatures underneath the summer mixed layer did not increase significantly. The absolute maximum in summer mixed layer temperatures occurred between 9 and 6 ka BP, representing the Holocene Thermal Maximum in the eastern Nordic Seas. In contrast, maximum in northward oceanic heat transport through the Norwegian Atlantic Current occurred approximately 10 ka BP. The maximum in oceanic heat transport at 10 ka BP occurred due to a major reorganization of the Atlantic Ocean circulation, entailing strong and deep rejuvenation of the Atlantic Meridional Overturning Circulation, combined with changes in the North Atlantic gyre dynamic causing enhanced transport of heat and salt into the Nordic Seas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements GIA is grateful for funding from the Carnegie Trust for the Universities of Scotland that enabled fieldwork for this project. RW was supported by the Israel Science Foundation (ISF grant No. 1245/11). SM was supported by the Israel Science Foundation (ISF grant No. 1436/14). We would like to thank Chris Talbot and Yohann Poprawski for careful and constructive reviews. The authors appreciate the help of Nicolas Waldmann in precisely locating the positons of dated unconformities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two water samples and two sediment samples taken in 1965 by the R. V. "Meteor" in the area of the hot salt brine of the Atlantis II-Deep were chemically investigated, and in addition the sediment samples were subjected to X-ray and optical analysis. The investigation of the sulfur-isotope-ratios showed the same values for all water samples. This information combined with the Ca-sulfate solubility data leads us to conclude that, for the most part, the sulfate content of the salt brine resulted from mixing along the boundary with the normal seawater. In this boundary area gypsum or anhydrite is formed which sinks down to the deeper layers of the salt brine where it is redisolved when the water becomes undersaturated. In the laboratory, formation of CaS04 precipitate resulted from both the reheating of the water sample from the uppermost zone of the salt brine to the in-situ-temperature as well as by the mixing of the water sample with normal Red Sea water. The iron and manganese delivered by the hot spring is separated within the area of the salt brine by their different redox-potentials. Iron is sedimented to a high amount within the salt brine, while, as evidenced by its small amounts in all sediment samples, the more easily reducible manganese is apparently carried out of the area before sedimentation can take place. The very good layering of the salt brine may be the result of the rough bottom topography with its several progressively higher levels allowing step-like enlargements of the surface areas of each successive layer. Each enlargement results in larger boundary areas along which more effective heat transfer and mixing with the next layer is possible. In the sediment samples up to 37.18% Fe is found, mostly bound as very poorly crystallized iron hydroxide. Pyrite is present in only very small amounts. We assume that the copper is bound mostly as sulfide, while the zinc is most likely present in an other form. The sulfur-isotope-investigations indicate that the sulfur in the sediment, bound as pyrite and sulfides, is not a result of bacterical sulfate-reduction in the iron-rich mud of the Atlantis II-Deep, but must have been brought up with the hot brine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin.We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling-Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling-Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and d18O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions.We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1ml/l and caused laminae preservation. Calculated benthic-planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling-Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730-990 yr during the Bølling-Allerød, 800-1100 yr in the Younger Dryas, and 765-775 yr for the Preboreal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In New Caledonia barren salt-pans located landward to mangroves are used for the construction of shrimp ponds. The existing farms are jeopardized by the projected rise in the sea level, because the landward boundaries of ponds are situated at the elevation reached by spring tides. One low-cost strategy for mitigating the effects of sea level rise is to raise the level of the bottom of ponds. To test the effectiveness of such an adaptation, we built 4 experimental ponds in the low-lying zone of an existing 10 ha shrimp pond. The level of the bottom of 2 ponds was raised by adding about 15 cm of agricultural soil. Placing agricultural soil in the pond did not impair the functioning of the shrimp pond ecosystem. On the contrary, it resulted in unexpectedly better shrimp production in the 2 ponds with agricultural soils versus control ponds. We conclude that placing a layer of soil inside shrimp ponds is a promising strategy for maintaining the viability of shrimp ponds as the sea level rises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the late Miocene, exchange between the Mediterranean Sea and Atlantic Ocean changed dramatically, culminating in the Messinian Salinity Crisis (MSC). Understanding Mediterranean-Atlantic exchange at that time could answer the enigmatic question of how so much salt built up within the Mediterranean, while furthering the development of a framework for future studies attempting to understand how changes may have impacted global thermohaline circulation. Due to their association with specific water masses at different scales, radiogenic Sr, Pb, and Nd isotope records were generated from various archives contained within marine deposits to endeavour to understand better late Miocene Mediterranean-Atlantic exchange. The archives used include foraminiferal calcite (Sr), fish teeth and bone (Nd), dispersed authigenic ferromanganese oxyhydroxides (Nd, Pb), and a ferromanganese crust (Pb). The primary focus is on sediments preserved at one end of the Betic corridor, a gateway that once connected the Mediterranean to the Atlantic through southern Spain, although other locations are investigated. The Betic gateway terminated within several marginal sub-basins before entering the Western Mediterranean; one of these is the Sorbas Basin, a well-studied location whose sediments have been astronomically tuned at high temporal resolution, providing the necessary age control for sub-precessional resolution records. Since the climatic history of the Mediterranean is strongly controlled by precessional changes in regional climate, the aim was to produce records at high (sub-precessional) temporal resolution, to be able to observe clearly any precessional cyclicity driven by regional climate which could be superimposed over longer trends. This goal was achieved for all records except the ferromanganese crust record. The 87Sr/86Sr isotope record (Ch. 3) shows precessional frequency excursions away from the global seawater curve. As precessional frequency oscillations are unexpected for this setting, a numerical box model was used to determine the mechanisms causing the excursions. To enable parameterisation of model variables, regional Sr characteristics, data from general circulation model HadCM3L, and new benthic foraminiferal assemblage data are employed. The model results imply that the Sorbas Basin likely had a positive hydrologic budget in the late Miocene, very different to that of today. Moreover, the model indicates that the mechanism controlling the Sr isotope ratio of Sorbas Basin seawater was not restriction, but a lack of density-driven exchange with the Mediterranean. Beyond improving our understanding of how marginal Mediterranean sub-basins may evolve different isotope signatures, these results have implications for astronomical tuning and stratigraphy in the region, findings which are crucial considering the geological and climatic history of the late Miocene Mediterranean is based entirely on marginal deposits. An improved estimate for the Nd isotope signature of late Miocene Mediterranean Outflow (MO) was determined by comparing Nd isotope signatures preserved in the deeper Alborán Sea at ODP Site 978 with literature data as well as the signature preserved in the Sorbas Basin (Ch. 4; -9.34 to -9.92 ± 0.37 εNd(t)). It was also inferred that it is unlikely that Nd isotopes can be used reliably to track changes in circulation within the shallow settings characteristic of the Mediterranean-Atlantic connections; this is significant in light of a recent publication documenting corridor closure using Nd isotopes. Both conclusions will prove useful for future studies attempting to understand changes in Mediterranean-Atlantic exchange. Excursions to high values, with precessional frequency, are also observed in the radiogenic Pb isotope record for the Sorbas Basin (Ch. 5). Widening the scope to include locations further away from the gateways, records were produced for late Miocene sections on Sicily and Northern Italy, and similar precessional frequency cyclicity was observed in the Pb isotope records for these sites as well. Comparing these records to proxies for Saharan dust and available whole rock data indicates that, while further analysis is necessary to draw strong conclusions, enhanced dust production during insolation minima may be driving the observed signal. These records also have implications for astronomical tuning; peaks in Pb isotope records driven by Saharan dust may be easier to connect directly to the insolation cycle, providing improved astronomical tuning points. Finally, a Pb isotope record derived using in-situ laser ablation performed on ferromanganese crust 3514-6 from the Lion Seamount, located west of Gibraltar within the MO plume, has provided evidence that plume depth shifted during the Pliocene. The record also suggests that Pb isotopes may not be a suitable proxy for changes in late Miocene Mediterranean-Atlantic exchange, since the Pb isotope signatures of regional water masses are too similar. To develop this record, the first published instance of laser ablation derived 230Thexcess measurements are combined with 10Be dating.