936 resultados para respiratory physiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous inhibition of the retrotrapezoid nucleus (RTN) and raphe obscurus (ROb) decreased the systemic CO2 response by 51%, an effect greater than inhibition of RTN (- 24%) or ROb (0%) alone, suggesting that ROb modulates chemoreception by interaction with the RTN (19). We investigated this interaction further by simultaneous dialysis of artificial cerebrospinal fluid equilibrated with 25% CO2 in two probes located in or adjacent to the RTN and ROb in conscious adult male rats. Ventilation was measured in a whole body plethysmograph at 30 C. There were four groups (n = 5): 1) probes correctly placed in both RTN and ROb (RTN-ROb); 2) one probe correctly placed in RTN and one incorrectly placed in areas adjacent to ROb (RTN-peri-ROb); 3) one probe correctly placed in ROb and one probe incorrectly placed in areas adjacent to RTN (peri-RTN-ROb); and 4) neither probe correctly placed (peri-RTN-peri-ROb). Focal simultaneous acidification of RTN-ROb significantly increased ventilation ((V) over dot E) up to 22% compared with baseline, with significant increases in both breathing frequency and tidal volume. Focal acidification of RTN-peri-ROb increased (V) over dot E significantly by up to 15% compared with baseline. Focal acidification of ROb and peri-RTN had no significant effect. The simultaneous acidification of regions just outside the RTN and ROb actually decreased (V) over dot E by up to 11%. These results support a modulatory role for the ROb with respect to central chemoreception at the RTN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although the influence of respiration on ventricular filling, as evaluated by Doppler technique, and the evaluation of diastolic velocities of mitral valve annulus (MVA), as measured by Doppler tissue imaging (DTI), can provide valuable information for the study of left ventricular (LV) diastolic function, the concomitant effects of aging, tidal volume (TV), and respiratory rate (RR) on these velocities have not been quantitatively investigated. Methods: We evaluated 12 normal male volunteers (Group I) aged 20-26 years (mean: 22.8) and 8 normal subjects aged 41 to 54 years old (mean: 45.9) (Group II). Using DTI we measured peak early (E-a) and late (A(a)) velocities of longitudinal axis expansion at lateral and medial MVA. Doppler mitral and tricuspid flow velocities were measured: peak early (E) and late (A) inflow velocity, early (E-i) and late (A(i)) flow integral, and deceleration time of peak early mitral flow velocity (DT). Respiratory cycles were simultaneously recorded at RR of 9, 12, 15, and 18 cycles/min and TV of 600 and 900 mL during respiration (RESP). Results and conclusions: (1) E, A, and A(i) in MV had negligible change during respiration, but E-i was significantly reduced during inspiration; (2) DT reduced slightly with inspiration, but the change was significant only with TV of 900 mL; (3) an important increase of E in right ventricular flow was observed during inspiration; (4) variations of RR and TV did not significantly influence right and left ventricular inflow in normal subjects, in the conditions of this investigation; (5) a significant increase of E-a at medial MVA was documented during inspiration only in young subjects; (6) a significant decrease of A(a) at medial MVA was observed during inspiration in both groups of volunteers; (7) RR and TV did not influence MVA velocities in young and adult subjects; (8) a consistent reduction in E-a and a significant increase in A(a) were observed with increasing age; (9) these changes were more conspicuous and consistent than those documented in ventricular filling when young and middle-age men are compared, suggesting that the DTI is more sensitive to detect changes in diastolic function; and (10) in addition, these data suggest that, for evaluation of diastolic function, in clinical context, it is not necessary to control rigorously RR or TV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Occupational risk due to airborne disease challenges healthcare institutions. Environmental measures are effective but their cost-effectiveness is still debatable and most of the capacity planning is based on occupational rates. Better indices to plan and evaluate capacity are needed. Goal To evaluate the impact of installing an exclusively dedicated respiratory isolation room (EDRIR) in a tertiary emergency department (ED) determined by a time-to-reach-facility method. Methods A group of patients in need of respiratory isolation were first identified-group I (2004; 29 patients; 44.1 +/- 3.4 years) and the occupational rate and time intervals (arrival to diagnosis, diagnosis to respiratory isolation indication and indication to effective isolation) were determined and it was estimated that adding an EDRIR would have a significant impact over the time to isolation. After implementing the EDRIR, a second group of patients was gathered in the same period of the year-group II (2007; 50 patients; 43.4 +/- 1.8 years) and demographic and functional parameters were recorded to evaluate time to isolation. Cox proportional hazard models adjusted for age, gender and inhospital respiratory isolation room availability were obtained. Results Implementing an EDRIR decreased the time from arrival to indication of respiratory isolation (27.5 +/- 9.3 X 3.7 +/- 2.0; p = 0.0180) and from indication to effective respiratory isolation (13.3 +/- 3.0 X 2.94 +/- 1.06; p = 0.003) but not the respiratory isolation duration and total hospital stay. The impact on crude isolation rates was very significant (8.9 X 75.4/100.000 patients; p < 0.001). The HR for effective respiratory isolation was 26.8 (95% CI 7.42 to 96.9) p < 0.001 greater for 2007. Conclusion Implementing an EDRIR in a tertiary ED significantly reduced the time to respiratory isolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate whether maternal HIV disease severity during pregnancy is associated with an increased likelihood of lower respiratory tract infections (LRTIs) in HIV-exposed, uninfected infants. Methods: HIV-exposed, uninfected, singleton, term infants enrolled in the NISDI Perinatal Study, with birth weight >2500 g were followed from birth until 6 months of age. LRTI diagnoses, hospitalizations, and associated factors were assessed. Results: Of 547 infants, 103 (18.8%) experienced 116 episodes of LRTI (incidence = 0.84 LRTIs/100 child-weeks). Most (81%) episodes were bronchiolitis. Forty-nine (9.0%) infants were hospitalized at least once with an LRTI. There were 53 hospitalizations (45.7%) for 116 LRTI episodes. None of these infants were breastfed. The odds of LRTI in infants whose mothers had CD4% <14 at enrollment were 4.4 times those of infants whose mothers had CD4% >= 29 (p = 0.003). The odds of LRTI in infants with a CD4+ count (cells/ mm(3)) <750 at hospital discharge were 16.0 times those of infants with CD4+ >= 750 (p = 0.002). Maternal CD4+ decline and infant hemoglobin at the 6-12 week visit were associated with infant LRTIs after 6-12 weeks and before 6 months of age. Conclusions: Acute bronchiolitis is common and frequently severe among HIV-exposed, uninfected infants aged 6 months or less. Lower maternal and infant CD4+ values were associated with a higher risk of infant LRTIs. Further understanding of the immunological mechanisms of severe LRTIs is needed. (C) 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals kept as pets may be considered sentinels for environmental factors to which humans could be exposed. Olfactory and respiratory epithelia are directly subjected to airborne factors, which could cause DNA lesions, and the alkaline comet assay is considered a reliable tool for the assessment of DNA damage. The objective of this work is to evaluate the extent of DNA damage by the comet assay of the olfactory and respiratory epithelia of dogs from different regions of the city of sao Paulo, Brazil. Thirty-three clinically healthy dogs, aged 5 years or more, were used in the study, with 7 from the North region of Sao Paulo, 7 from the South region, 3 dogs from the East region, and 16 dogs from the West city region. Three dogs younger than 6 months were used as controls. DNA damage was analyzed by the alkaline comet assay. We observed no difference in histopathological analysis of olfactory and respiratory epithelia between dogs from different regions of Sao Paulo. Dogs older than 5 years presented significantly higher comet length in both olfactory and respiratory epithelia, when compared with controls, indicating DNA damage. When separated by regions, olfactory and respiratory epithelia presented similar DNA damage in dogs from different regions of Sao Paulo, corroborating with similar levels of particulate matter index (PM10) in all regions of the city. In this study, we report for the first time that the comet assay can be used to quantify the extent of DNA damage in dog olfactory and respiratory epithelia, and that comet length (DNA damage) increases with age, probably due to environmental factors. Air pollution, as measured by PM 10, can be responsible for this DNA damage. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonergic (5-HT) neurons in the nucleus raphe obscurus (ROb) are involved in the respiratory control network. However, it is not known whether ROb 5-HT neurons play a role in the functional interdependence between central and peripheral chemoreceptors. Therefore, we investigated the role of ROb 5-HT neurons in the ventilatory responses to CO(2) and their putative involvement in the central-peripheral CO(2) chemoreceptor interaction in unanaesthetised rats. We used a chemical lesion specific for 5-HT neurons (anti-SERT-SAP) of the ROb in animals with the carotid body (CB) intact or removed (CBR). Pulmonary ventilation (V (E)), body temperature and the arterial blood gases were measured before, during and after a hypercapnic challenge (7% CO(2)). The lesion of ROb 5-HT neurons alone (CB intact) or the lesion of 5-HT neurons of ROb+CBR did not affect baseline V (E) during normocapnic condition. Killing ROb 5-HT neurons (CB intact) significantly decreased the ventilatory response to hypercapnia (p < 0.05). The reduction in CO(2) sensitivity was approximately 15%. When ROb 5-HT neurons lesion was combined with CBR (anti-SERT-SAP+CBR), the V (E) response to hypercapnia was further decreased (-31.2%) compared to the control group. The attenuation of CO(2) sensitivity was approximately 30%, and it was more pronounced than the sum of the individual effects of central (ROb lesion; -12.3%) or peripheral (CBR; -5.5%) treatments. Our data indicate that ROb 5-HT neurons play an important role in the CO(2) drive to breathing and may act as an important element in the central-peripheral chemoreception interaction to CO(2) responsiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The locus coeruleus (LC) is a noradrenergic nucleus that plays an important role in the ventilatory response to hypercapnia. This nucleus is densely innervated by serotonergic fibers and contains high density of serotonin (5-HT) receptors, including 5-HT(1A) and 5-HT(2). We assessed the possible modulation of respiratory response to hypercapnia by 5-HT, through 5-HT(1A) and 5-HT(2) receptors, in the LC. To this end, we determined the concentrations of 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the LC after hypercapnic exposure. Pulmonary ventilation (V(E), plethysmograph) was measured before and after unilateral microinjection (100 nL) of WAY-100635 (5-HT(1A) antagonist, 5.6 and 56 mM), 8-OHDPAT (5-HT(1A/7) agonist, 7 and 15 mM), Ketanserin (5-HT(2A) antagonist, 3.7 and 37 mM), or (+/-)-2,5-dimethoxy-4-iodoamphetaminehydrochloride (DOI; 5-HT(2A) agonist, 6.7 and 67 mM) into the LC, followed by a 60-min period of 7% CO(2) exposure. Hypercapnia increased 5-HTIAA levels and 5-HIAA/5-HT ratio within the LC. WAY-100635 and 8-OHDPAT intra-LC decreased the hypercapnic ventilatory response due to a lower tidal volume. Ketanserin increased CO(2) drive to breathing and DOI caused the opposite response, both acting on tidal volume. The current results provide evidence of increased 5-HT release during hypercapnia in the LC and that 5-HT presents an inhibitory modulation of the stimulatory role of LC on hypercapnic ventilatory response, acting through postsynaptic 5-HT(2A) receptors in this nucleus. In addition, hypercapnic responses seem to be also regulated by presynaptic 5-HT(1A) receptors in the LC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

KCNQ1 (K(V)LQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study. the properties and regulation of the cloned sK(V)LQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a complex disease affecting epithelial ion transport. There are not many diseases like CF that have triggered such intense research activities. The complexity of the disease is due to mutations in the CFTR protein, now known to be a Cl- channel and a regulator of other transport proteins. The various interactions and the large number of disease-causing CFTR mutations is the reason for a variable genotype-phenotype correlation and sometimes unpredictable clinical manifestation. Nevertheless, the research of the past 10 years has resulted in a tremendous increase in knowledge, not only in regard to CFTR but also in regard to molecular interactions and completely new means of ion channel and gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K+ channel KCNQ1 (K(V)LQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes, Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.