902 resultados para plate buckling, stability, plated structure, finite element method, air duct
Resumo:
By coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM) an algorithm that combines the advantages of both numerical processes is developed. The main aim of the work concerns the time domain analysis of general three-dimensional wave propagation problems in elastic media. In addition, mathematical and numerical aspects of the related BE-, FE- and BE/FE-formulations are discussed. The coupling algorithm allows investigations of elastodynamic problems with a BE- and a FE-subdomain. In order to observe the performance of the coupling algorithm two problems are solved and their results compared to other numerical solutions.
Resumo:
The thesis work models the squeezing of the tube and computes the fluid motion of a peristaltic pump. The simulations have been conducted by using COMSOL Multiphysics FSI module. The model is setup in axis symmetric with several simulation cases to have a clear understanding of the results. The model captures total displacement of the tube, velocity magnitude, and average pressure fluctuation of the fluid motion. A clear understanding and review of many mathematical and physical concepts are also discussed with their applications in real field. In order to solve the problems and work around the resource constraints, a thorough understanding of mass balance and momentum equations, finite element concepts, arbitrary Lagrangian-Eulerian method, one-way coupling method, two-way coupling method, and COMSOL Multiphysics simulation setup are understood and briefly narrated.
Resumo:
The overall objective of the thesis is to design a robot chassis frame which is a bearing structure of a vehicle supporting all mechanical components and providing structure and stability. Various techniques and scientific principles were used to design a chassis frame.Design principles were applied throughout the process. By using Solid-Works software,virtual models was made for chassis frame. Chassis frame of overall dimension 1597* 800*950 mm3 was designed. Center of mass lieson 1/3 of the length from front wheel at height 338mm in the symmetry plane. Overall weight of the chassis frame is 80.12kg. Manufacturing drawing is also provided. Additionally,structural analysis was done in FEMAP which gives the busting result for chassis design by taking into consideration stress and deflection on different kind of loading resembling real life case. On the basis of simulated result, selected material was verified. Resulting design is expected to perform its intended function without failure. As a suggestion for further research, additional fatigue analysis and proper dynamic analysis can be conducted to make the study more robust.
Resumo:
The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.
Resumo:
A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.
Resumo:
To study the behaviour of beam-to-column composite connection more sophisticated finite element models is required, since component model has some severe limitations. In this research a generic finite element model for composite beam-to-column joint with welded connections is developed using current state of the art local modelling. Applying mechanically consistent scaling method, it can provide the constitutive relationship for a plane rectangular macro element with beam-type boundaries. Then, this defined macro element, which preserves local behaviour and allows for the transfer of five independent states between local and global models, can be implemented in high-accuracy frame analysis with the possibility of limit state checks. In order that macro element for scaling method can be used in practical manner, a generic geometry program as a new idea proposed in this study is also developed for this finite element model. With generic programming a set of global geometric variables can be input to generate a specific instance of the connection without much effort. The proposed finite element model generated by this generic programming is validated against testing results from University of Kaiserslautern. Finally, two illustrative examples for applying this macro element approach are presented. In the first example how to obtain the constitutive relationships of macro element is demonstrated. With certain assumptions for typical composite frame the constitutive relationships can be represented by bilinear laws for the macro bending and shear states that are then coupled by a two-dimensional surface law with yield and failure surfaces. In second example a scaling concept that combines sophisticated local models with a frame analysis using a macro element approach is presented as a practical application of this numerical model.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
Resumo:
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.
Resumo:
e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.
Resumo:
EVENT has been used to examine the effects of 3D cloud structure, distribution, and inhomogeneity on the scattering of visible solar radiation and the resulting 3D radiation field. Large eddy simulation and aircraft measurements are used to create realistic cloud fields which are continuous or broken with smooth or uneven tops. The values, patterns and variance in the resulting downwelling and upwelling radiation from incident visible solar radiation at different angles are then examined and compared to measurements. The results from EVENT confirm that 3D cloud structure is important in determining the visible radiation field, and that these results are strongly influenced by the solar zenith angle. The results match those from other models using visible solar radiation, and are supported by aircraft measurements of visible radiation, providing confidence in the new model.