920 resultados para oral fat tolerance test
Resumo:
Neonatal diabetes mellitus can be transient or permanent. The severe form of permanent neonatal diabetes mellitus can be associated with pancreas agenesis. Normal pancreas development is controlled by a cascade of transcription factors, where insulin promoter factor 1 (IPF1) plays a crucial role. Here, we describe two novel mutations in the IPF1 gene leading to pancreas agenesis. Direct sequence analysis of exons 1 and 2 of the IPF1 gene revealed two point mutations within the homeobox in exon 2. Genetic analysis of the parents showed that each mutation was inherited from one parent. Mutations localized in helices 1 and 2, respectively, of the homeodomain, decreased the protein half-life significantly, leading to intracellular IPF1 levels of 36% and 27% of wild-type levels. Both mutant forms of IPF1 were normally translocated to the nucleus, and their DNA binding activity on different known target promoters was similar to that of the wild-type protein. However, transcriptional activity of both mutant IPF1 proteins, alone or in combination with HNF3 beta/Foxa2, Pbx1, or the heterodimer E47-beta 2 was reduced, findings accounted for by decreased IPF1 steady state levels and not by impaired protein-protein interactions. We conclude that the IPF1 level is critical for human pancreas formation.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
BACKGROUND This study was realized thanks to the collaboration of children and adolescents who had been resected from cerebellar tumors. The medulloblastoma group (CE+, n = 7) in addition to surgery received radiation and chemotherapy. The astrocytoma group (CE, n = 13) did not receive additional treatments. Each clinical group was compared in their executive functioning with a paired control group (n = 12). The performances of the clinical groups with respect to controls were compared considering the tumor's localization (vermis or hemisphere) and the affectation (or not) of the dentate nucleus. Executive variables were correlated with the age at surgery, the time between surgery-evaluation and the resected volume. METHODS The executive functioning was assessed by means of WCST, Complex Rey Figure, Controlled Oral Word Association Test (letter and animal categories), Digits span (WISC-R verbal scale) and Stroop test. These tests are very sensitive to dorsolateral PFC and/or to medial frontal cortex functions. The scores for the non-verbal Raven IQ were also obtained. Direct scores were corrected by age and transformed in standard scores using normative data. The neuropsychological evaluation was made at 3.25 (SD = 2.74) years from surgery in CE group and at 6.47 (SD = 2.77) in CE+ group. RESULTS The Medulloblastoma group showed severe executive deficit (= 1.5 SD below normal mean) in all assessed tests, the most severe occurring in vermal patients. The Astrocytoma group also showed executive deficits in digits span, semantic fluency (animal category) and moderate to slight deficit in Stroop (word and colour) tests. In the astrocytoma group, the tumor's localization and dentate affectation showed different profile and level of impairment: moderate to slight for vermal and hemispheric patients respectively. The resected volume, age at surgery and the time between surgery-evaluation correlated with some neuropsychological executive variables. CONCLUSION Results suggest a differential prefrontal-like deficit due to cerebellar lesions and/or cerebellar-frontal diaschisis, as indicate the results in astrocytoma group (without treatments), that also can be generated and/or increased by treatments in the medulloblastoma group. The need for differential rehabilitation strategies for specific clinical groups is remarked. The results are also discussed in the context of the Cerebellar Cognitive Affective Syndrome.
Resumo:
STUDY OBJECTIVE: To establish guidelines for the diagnosis and management of chylothorax in children. DESIGN: Retrospective study. PATIENTS: Fifty-one patients with a diagnosis of chylothorax. Twelve patients were excluded because of incomplete data or incorrect diagnosis. The following parameters were analyzed: triglyceride level, total cell number, and lymphocyte percentage; amount of pleural effusion on day of diagnosis, day 5, and day 14; and total time of pleural effusion. Prospectively, the same parameters were analyzed in a control group of 10 patients with pleural drainage. INTERVENTION: Patients with chylothorax were treated primarily with fat-free oral nutrition; if chyle did not stop, total parenteral nutrition with total enteric rest was started. If conservative therapy was not successful, pleurodesis was performed. RESULTS: In children with chylothorax triglyceride, triglyceride content ranged from 0.56 to 26.6 mmol/L; all values except one were > 1.1 mmol/L. In 36 of 39 patients (92%), the cell count was > 1,000 cells/microL. In 33 of 39 patients (85%), lymphocytes were > 90%. In patients without chylothorax triglyceride, triglyceride levels ranged from 0.1 to 0.71 mmol/L (median, 0.38 mmol/L) and cell count was from 20 to 1400 cells/microL (median, 322 cells/microL), with a maximum of 60% lymphocytes. With fat-free nutrition, chyle disappeared in 29 of 39 patients. Five patients died, and five required pleurodesis. CONCLUSIONS: Pleural effusion in children is chyle when it contains > 1.1 mmol/L triglycerides (with oral fat intake) and has a total cell count > or 1,000 cells/microL, with a lymphocyte fraction > 80%. Chylous effusions usually last long; however, after 6 weeks, the majority of the effusions (29 of 39 patients) had ceased. Late surgical interventions reduce the number of thoracotomies substantially, but can lead to very long hospitalization times. Early surgical interventions (after < 3 weeks) lead to a high number of thoracotomies, but certainly reduce hospitalization time.
Resumo:
Early revascularization of pancreatic islet cells after transplantation is crucial for engraftment, and it has been suggested that vascular endothelial growth factor-A (VEGF-A) plays a significant role in this process. Although VEGF gene therapy can improve angiogenesis, uncontrolled VEGF secretion can lead to vascular tumor formation. Here we have explored the role of temporal VEGF expression, controlled by a tetracycline (TC)-regulated promoter, on revascularization and engraftment of genetically modified beta cells following transplantation. To this end, we modified the CDM3D beta cell line using a lentiviral vector to promote secretion of VEGF-A either in a TC-regulated (TET cells) or a constitutive (PGK cells) manner. VEGF secretion, angiogenesis, cell proliferation, and stimulated insulin secretion were assessed in vitro. VEGF secretion was increased in TET and PGK cells, and VEGF delivery resulted in angiogenesis, whereas addition of TC inhibited these processes. Insulin secretion by the three cell types was similar. We used a syngeneic mouse model of transplantation to assess the effects of this controlled VEGF expression in vivo. Time to normoglycemia, intraperitoneal glucose tolerance test, graft vascular density, and cellular mass were evaluated. Increased expression of VEGF resulted in significantly better revascularization and engraftment after transplantation when compared to control cells. In vivo, there was a significant increase in vascular density in grafted TET and PGK cells versus control cells. Moreover, the time for diabetic mice to return to normoglycemia and the stimulated plasma glucose clearance were also significantly accelerated in mice transplanted with TET and PGK cells when compared to control cells. VEGF was only needed during the first 2-3 weeks after transplantation; when removed, normoglycemia and graft vascularization were maintained. TC-treated mice grafted with TC-treated cells failed to restore normoglycemia. This approach allowed us to switch off VEGF secretion when the desired effects had been achieved. TC-regulated temporal expression of VEGF using a gene therapy approach presents a novel way to improve early revascularization and engraftment after islet cell transplantation.
Resumo:
Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.
Resumo:
OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.
Resumo:
AIMS: To investigate the relationships between gestational diabetes mellitus (GDM) and the metabolic syndrome (MS), as it was suggested that insulin resistance was the hallmark of both conditions. To analyse post-partum screening in order to identify risk factors for the subsequent development of type 2 diabetes mellitus (DM). METHODS: A retrospective analysis of all singleton pregnancies diagnosed with GDM at the Lausanne University Hospital for 3 consecutive years. Pre-pregnancy obesity, hypertension and dyslipidaemia were recorded as constituents of the MS. RESULTS: For 5788 deliveries, 159 women (2.7%) with GDM were identified. Constituents of the MS were present before GDM pregnancy in 26% (n = 37/144): 84% (n = 31/37) were obese, 38% (n = 14/37) had hypertension and 22% (n = 8/37) had dyslipidaemia. Gestational hypertension was associated with obesity (OR = 3.2, P = 0.02) and dyslipidaemia (OR = 5.4, P=0.002). Seventy-four women (47%) returned for post-partum OGTT, which was abnormal in 20 women (27%): 11% (n = 8) had type 2 diabetes and 16% (n = 12) had impaired glucose tolerance. Independent predictors of abnormal glucose tolerance in the post-partum were: having > 2 abnormal values on the diagnostic OGTT during pregnancy and presenting MS constituents (OR = 5.2, CI 1.8-23.2 and OR = 5.3, CI 1.3-22.2). CONCLUSIONS: In one fourth of GDM pregnancies, metabolic abnormalities precede the appearance of glucose intolerance. These women have a high risk of developing the MS and type 2 diabetes in later years. Where GDM screening is not universal, practitioners should be aware of those metabolic risks in every pregnant woman presenting with obesity, hypertension or dyslipidaemia, in order to achieve better diagnosis and especially better post-partum follow-up and treatment.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse alpha to beta cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic beta cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of alpha to beta cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in beta cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.
Resumo:
BACKGROUND: Administration of 13-cis retinoic acid (isotretinoin) for acne is occasionally accompanied by hyperlipidemia. It is not known why some persons develop this side effect. OBJECTIVE: To determine whether isotretinoin triggers a familial susceptibility to hyperlipidemia and the metabolic syndrome. DESIGN: Cross-sectional comparison. SETTING: University hospital in Lausanne, Switzerland. PARTICIPANTS: 102 persons in whom triglyceride levels increased at least 1.0 mmol/L (> or =89 mg/dL) (hyperresponders) and 100 persons in whom triglyceride levels changed 0.1 mmol/L (< or =9 mg/dL) or less (nonresponders) during isotretinoin therapy for acne. Parents of 71 hyperresponders and 60 nonresponders were also evaluated. MEASUREMENTS: Waist-to-hip ratio; fasting glucose, insulin, and lipid levels; and apoE genotype. RESULTS: Hyperresponders and nonresponders had similar pretreatment body weight and plasma lipid levels. When reevaluated approximately 4 years after completion of isotretinoin therapy, hyperresponders were more likely to have hypertriglyceridemia (triglyceride level > 2.0 mmol/L [>177 mg/dL]; odds ratio [OR], 4.8 [95% CI, 1.6 to 13.8]), hypercholesterolemia (cholesterol level > 6.5 mmol/L [>252 mg/dL]; OR, 9.1 [CI, 1.9 to 43]), truncal obesity (waist-to-hip ratio > 0.90 [OR, 11.0 (CI, 2.0 to 59]), and hyperinsulinemia (insulin-glucose ratio > 7.2; OR, 3.0 [CI, 1.6 to 5.7]). In addition, more hyperresponders had at least one parent with hypertriglyceridemia (OR, 2.6 [CI, 1.2 to 5.7]) or a ratio of total to high-density lipoprotein cholesterol that exceeded 4.0 (OR, 3.5 [CI, 1.5 to 8.0]). Lipid response to isotretinoin was closely associated with the apoE gene. CONCLUSION: Persons who develop hypertriglyceridemia during isotretinoin therapy for acne, as well as their parents, are at increased risk for future hyperlipidemia and the metabolic syndrome.
Resumo:
Real time glycemia is a cornerstone for metabolic research, particularly when performing oral glucose tolerance tests (OGTT) or glucose clamps. From 1965 to 2009, the gold standard device for real time plasma glucose assessment was the Beckman glucose analyzer 2 (Beckman Instruments, Fullerton, CA), which technology couples glucose oxidase enzymatic assay with oxygen sensors. Since its discontinuation in 2009, today's researchers are left with few choices that utilize glucose oxidase technology. The first one is the YSI 2300 (Yellow Springs Instruments Corp., Yellow Springs, OH), known to be as accurate as the Beckman(1). The YSI has been used extensively for clinical research studies and is used to validate other glucose monitoring devices(2). The major drawback of the YSI is that it is relatively slow and requires high maintenance. The Analox GM9 (Analox instruments, London), more recent and faster, is increasingly used in clinical research(3) as well as in basic sciences(4) (e.g. 23 papers in Diabetes or 21 in Diabetologia). This article is protected by copyright. All rights reserved.
Resumo:
RATIONALE: Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. OBJECTIVE: To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. METHODS AND RESULTS: Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. CONCLUSIONS: Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.
Resumo:
The effect of progesterone (P4) on fructose rich diet (FRD) intake-induced metabolic, endocrine and parametrial adipose tissue (PMAT) dysfunctions was studied in the adult female rat. Sixty day-old rats were i.m. treated with oil alone (control, CT) or containing P4 (12 mg/kg). Rats ate Purina chow-diet ad libitum throughout the entire experiment and, between 100 and 120 days of age drank ad libitum tap water alone (normal diet; CT-ND and P4-ND) or containing fructose (10% w/v; CT-FRD and P4-FRD). At age 120 days, animals were subjected to a glucose tolerance test or decapitated. Plasma concentrations of various biomarkers and PMAT gene abundance were monitored. P4-ND (vs. CT-ND) rats showed elevated circulating levels of lipids. CT-FRD rats displayed high (vs. CT-ND) plasma concentrations of lipids, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). Lipidemia and adiponectinemia were high (vs. P4-ND) in P4-FRD rats. Although P4 failed to prevent FRD-induced hyperleptinemia, it was fully protective on FRD-enhanced plasma PAI-1 levels. PMAT leptin and adiponectin mRNAs were high in CT-FRD and P4-FRD rats. While FRD enhanced PMAT PAI-1 mRNA abundance in CT rats, this effect was absent in P4 rats. Our study supports that a preceding P4-enriched milieu prevented the enhanced prothrombotic risk induced by FRD-elicited high PAI-1 production.