700 resultados para online social networks
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
Market research is often conducted through conventional methods such as surveys, focus groups and interviews. But the drawbacks of these methods are that they can be costly and timeconsuming. This study develops a new method, based on a combination of standard techniques like sentiment analysis and normalisation, to conduct market research in a manner that is free and quick. The method can be used in many application-areas, but this study focuses mainly on the veganism market to identify vegan food preferences in the form of a profile. Several food words are identified, along with their distribution between positive and negative sentiments in the profile. Surprisingly, non-vegan foods such as cheese, cake, milk, pizza and chicken dominate the profile, indicating that there is a significant market for vegan-suitable alternatives for such foods. Meanwhile, vegan-suitable foods such as coconut, potato, blueberries, kale and tofu also make strong appearances in the profile. Validation is performed by using the method on Volkswagen vehicle data to identify positive and negative sentiment across five car models. Some results were found to be consistent with sales figures and expert reviews, while others were inconsistent. The reliability of the method is therefore questionable, so the results should be used with caution.
Resumo:
Social networks rely on concepts such as collaboration, cooperation, replication, flow, speed, interaction, engagement, and aim the continuous sharing and resharing of information in support of the permanent social interaction. Facebook, the largest social network in the world, reached, in May 2016, the mark of 1.09 billion active users daily, draining 161.7 million hours of users’ attention to the website every day. These users share 4.75 billion units of content daily. The research presented in this dissertation aims to investigate the management of knowledge and collective intelligence, from the introduction of mechanisms that aim to enable users to manage and organize current information in the feeds from Facebook groups in which they participate, turning Facebook into a collective knowledge and information management device that goes far beyond mere interaction and communication among people. The adoption of Design Science Research methodology is intended to instill the "genes" of collective intelligence, as presented in the literature, in the computational artifact being developed, so that intelligence can be managed and used to create even more knowledge and intelligence to and by the group. The main theoretical contribution of this dissertation is to discuss knowledge management and collective intelligence in a complementary and integrated manner, showing how efforts to obtain one also contribute to leveraging the other.
Resumo:
Social network sites (SNS), such as Facebook, Google+ and Twitter, have attracted hundreds of millions of users daily since their appearance. Within SNS, users connect to each other, express their identity, disseminate information and form cooperation by interacting with their connected peers. The increasing popularity and ubiquity of SNS usage and the invaluable user behaviors and connections give birth to many applications and business models. We look into several important problems within the social network ecosystem. The first one is the SNS advertisement allocation problem. The other two are related to trust mechanisms design in social network setting, including local trust inference and global trust evaluation. In SNS advertising, we study the problem of advertisement allocation from the ad platform's angle, and discuss its differences with the advertising model in the search engine setting. By leveraging the connection between social networks and hyperbolic geometry, we propose to solve the problem via approximation using hyperbolic embedding and convex optimization. A hyperbolic embedding method, \hcm, is designed for the SNS ad allocation problem, and several components are introduced to realize the optimization formulation. We show the advantages of our new approach in solving the problem compared to the baseline integer programming (IP) formulation. In studying the problem of trust mechanisms in social networks, we consider the existence of distrust (i.e. negative trust) relationships, and differentiate between the concept of local trust and global trust in social network setting. In the problem of local trust inference, we propose a 2-D trust model. Based on the model, we develop a semiring-based trust inference framework. In global trust evaluation, we consider a general setting with conflicting opinions, and propose a consensus-based approach to solve the complex problem in signed trust networks.
Resumo:
In this dissertation, we apply mathematical programming techniques (i.e., integer programming and polyhedral combinatorics) to develop exact approaches for influence maximization on social networks. We study four combinatorial optimization problems that deal with maximizing influence at minimum cost over a social network. To our knowl- edge, all previous work to date involving influence maximization problems has focused on heuristics and approximation. We start with the following viral marketing problem that has attracted a significant amount of interest from the computer science literature. Given a social network, find a target set of customers to seed with a product. Then, a cascade will be caused by these initial adopters and other people start to adopt this product due to the influence they re- ceive from earlier adopters. The idea is to find the minimum cost that results in the entire network adopting the product. We first study a problem called the Weighted Target Set Selection (WTSS) Prob- lem. In the WTSS problem, the diffusion can take place over as many time periods as needed and a free product is given out to the individuals in the target set. Restricting the number of time periods that the diffusion takes place over to be one, we obtain a problem called the Positive Influence Dominating Set (PIDS) problem. Next, incorporating partial incentives, we consider a problem called the Least Cost Influence Problem (LCIP). The fourth problem studied is the One Time Period Least Cost Influence Problem (1TPLCIP) which is identical to the LCIP except that we restrict the number of time periods that the diffusion takes place over to be one. We apply a common research paradigm to each of these four problems. First, we work on special graphs: trees and cycles. Based on the insights we obtain from special graphs, we develop efficient methods for general graphs. On trees, first, we propose a polynomial time algorithm. More importantly, we present a tight and compact extended formulation. We also project the extended formulation onto the space of the natural vari- ables that gives the polytope on trees. Next, building upon the result for trees---we derive the polytope on cycles for the WTSS problem; as well as a polynomial time algorithm on cycles. This leads to our contribution on general graphs. For the WTSS problem and the LCIP, using the observation that the influence propagation network must be a directed acyclic graph (DAG), the strong formulation for trees can be embedded into a formulation on general graphs. We use this to design and implement a branch-and-cut approach for the WTSS problem and the LCIP. In our computational study, we are able to obtain high quality solutions for random graph instances with up to 10,000 nodes and 20,000 edges (40,000 arcs) within a reasonable amount of time.
Resumo:
Over the last few years, football entered in a period of accelerated access to large amount of match analysis data. Social networks have been adopted to reveal the structure and organization of the web of interactions, such as the players passing distribution tendencies. In this study we investigated the influence of ball possession characteristics in the competitive success of Spanish La Liga teams. The sample was composed by OPTA passing distribution raw data (n=269,055 passes) obtained from 380 matches involving all the 20 teams of the 2012/2013 season. Then, we generated 760 adjacency matrixes and their corresponding social networks using Node XL software. For each network we calculated three team performance measures to evaluate ball possession tendencies: graph density, average clustering and passing intensity. Three levels of competitive success were determined using two-step cluster analysis based on two input variables: the total points scored by each team and the scored per conceded goals ratio. Our analyses revealed significant differences between competitive performances on all the three team performance measures (p < .001). Bottom-ranked teams had less number of connected players (graph density) and triangulations (average clustering) than intermediate and top-ranked teams. However, all the three clusters diverged in terms of passing intensity, with top-ranked teams having higher number of passes per possession time, than intermediate and bottom-ranked teams. Finally, similarities and dissimilarities in team signatures of play between the 20 teams were displayed using Cohen’s effect size. In sum, findings suggest the competitive performance was influenced by the density and connectivity of the teams, mainly due to the way teams use their possession time to give intensity to their game.
Resumo:
Dissertação de Mestrado, Direção e Gestão Hoteleira, Escola Superior de Gestão, Hotelaria e Turismo, Universidade do Algarve, 2016
Resumo:
Teoria delle funzioni di matrici. Spiegazione del concetto di network, proprietà rilevanti rilevate attraverso determinate funzioni di matrici. Applicazione della teoria a due esempi di network reali.
Resumo:
En base a los resultados obtenidos en investigaciones efectuadas por el grupo de investigación del Instituto de Investigaciones en Humanidades y Ciencias Sociales (UNLP-CONICET) sobre redes sociales en distintos tipos de bibliotecas (de investigación, universitarias y populares) en Argentina, se efectúa un balance sobre su uso en este tipo de instituciones y se proponen lineamientos para la formulación de una política comunicacional que las contemple y forme parte del plan de gestión de estas unidades de información. Los mismos apuntan a considerar cabalmente todos los aspectos vinculados a los alcances, limitaciones, usos, riesgos y demás que implica la adopción y la apropiación de diferentes redes sociales (tales como Facebook, Twitter, entre otras), su convivencia, gestión y sustentabilidad a lo largo del tiempo
Resumo:
Online social networks, user-created content and participatory media are often still ignored by professionals, denounced in the press and banned in schools. but the potential of digital literacy should not be underestimated. Hartley reassesses the historical and global context, commercial and cultural dynamics and the potential of popular productivity through analysis of the use of digital media in various domains, including creative industries, digital storytelling, YouTube, journalism and mediated fashion.
Resumo:
A great challenge exists today: how to reach youth (a.k.a. the iYGeneration) who consume multiple media concurrently, who can access information on demand, and who have intertwined virtual social media networks in their lives. Our research finds that Australian youth multi-task and rarely use traditional media, although significant differences between males and females, as well as late tweens and 20-somethings, exist. Technology convergence facilitates two-way dialogue, allowing growing social interactions to occur in their technological environments. Our findings show that in order for marketing communication professionals to effectively communicate with this market, it is crucial to know exactly how the iYGeneration use media, which media they use, and when they use it.