594 resultados para nanoscience


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence is a powerful tool in biological research, the relevance of which relies greatly on the availability of sensitive and selective fluorescent probes. Nanometer sized fluorescent semiconductor materials have attracted considerable attention in recent years due to the high luminescence intensity, low photobleaching, large Stokesâ shift and high photochemical stability. The optical and spectroscopic features of nanoparticles make them very convincing alternatives to traditional fluorophores in a range of applications. Efficient surface capping agents make these nanocrystals bio-compatible. They can provide a novel platform on which many biomolecules such as DNA, RNA and proteins can be covalently linked. In the second phase of the present work, bio-compatible, fluorescent, manganese doped ZnS (ZnS:Mn) nanocrystals suitable for bioimaging applications have been developed and their cytocompatibility has been assessed. Functionalization of ZnS:Mn nanocrystals by safe materials results in considerable reduction of toxicity and allows conjugation with specific biomolecules. The highly fluorescent, bio-compatible and water- dispersible ZnS:Mn nanocrystals are found to be ideal fluorescent probes for biological labeling

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated similar to 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

chiral molecules can modify surfaces in many ways. Long-range chiral structures can be induced by local chirality, which can act as templates stereo-directing other molecules. Such templates are either based on the arrangement of molecules alone or involve reconstruction of the substrate suface. Stereo-direction can also be achieved buy direct local interaction between chiral moleculesx. Even the adsorption of achiral molecules onto achiral surfaces can induce local chirality due to a reduction ofsymmetry in the presence of the surface. Intrinsically chiral metal and oxide surfaces can act as templates for enantioselective adsorption and surface reactions without any surface modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os-0(bpy)(CO)(2)](n), (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os-II(bpy)(CO)(2)Cl-2]. The one-electron-reduced form, [Os-II(bpy(.-))(CO)(2)Cl-2](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [{Os-0(bpy(.-))(CO)(2)}(-)](n), the electron-rich electrocatalyst of CO2 reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os-0(bpy)(CO)(MeCN)(2)Cl](n).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of backbone modified peptides of general formula Boc-Xx-m-ABA-Yy-OMe where m-ABA is meta-aminobenzoic acid and Xx and Yy are natural amino acids such as Phe, Gly, Pro, Leu, Ile, Tyr and Trp etc., are found to self-assemble into soft nanovesicular structures in methanol-water solution (9:1 by v/v). At higher concentration the peptides generate larger vesicles which are formed through fusion of smaller vesicles. The formation of vesicles has been facilitated through the participation of various noncovalent interactions such as aromatic pi-stacking, hydrogen bonding and hydrophobic interactions. Model study indicates that the pi-stacking induced self-assembly, mediated by m-ABA is essential for well structured vesicles formation. The presence of conformationally rigid m-ABA in the backbone of the peptides also helps to form vesicular structures by restricting the conformational entropy. The vesicular structures get disrupted in presence of various salts such as KCl, CaCl(2), N(n-Bu)(4)Br and (NH(4))(2)SO(4) in methanol-water solution. Fluorescence microscopy and UV studies reveal that the soft nanovesicles encapsulate organic dye molecules such as Rhodamine B and Acridine Orange which could be released through salts induced disruption of vesicles.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of FDU-1 silica with large cage-like mesopores prepared with a new triblock copolymer Vorasurf 504 (R) (Eo)(38)(BO)(46)(EO)(38) was developed. The hydrothermal treatment temperature, the dissolution of the copolymer in ethanol, the HCl concentration, the solution stirring time and the hydrothermal treatment time in a microwave oven were evaluated with factorial design procedures. The dissolution in ethanol is important to produce a material with better porous morphology. Increases in the hydrothermal temperature (100 degrees C) and HCl concentration (2 M) improved structural, textural and chemical properties of the cubic ordered mesoporous silica. Also, longer times induced better physical and chemical property characteristics. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.