967 resultados para multidrug-resistant isolates


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this preliminary study eighteen p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides with antimicrobial activity were evaluated against multidrug-resistant Staphylococcus aureus, correlating the three-dimensional characteristics of the ligands with their respective bioactivities. The computer programs Sybyl and CORINA were used, respectively, for the design and three-dimensional conversion of the ligands. Molecular interaction fields were calculated using GRID program. Calculations using Volsurf resulted in a statistically consistent model with 48 structural descriptors showing that hydrophobicity is a fundamental property in the analyzed biological response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enterococci can be used in the food industry as starter or probiotic cultures. However, enterococci are also implicated in severe multi-resistant nosocomial infections. In this study, the prevalence of enterococci in selected Brazilian foodstuffs (raw and pasteurized milk, meat products, cheeses and vegetables) was evaluated. Phenotypic and PCR protocols were used for species identification. Tests for production of gelatinase, haemolysin, bacteriocin and bile salt hydrolysis were done with all enterococci isolates, whereas molecular determination of virulence markers (genes esp, gel, ace, as, efaA, hyl and cylA) and antibiotic resistance was checked only for Enterococcus faecium and Enterococcus faecalis isolates. The antibiotic-resistant isolates were assayed for biofilm formation and adhesion to mammalian cells. From the 120 food samples analyzed, 52.5% were positive for enterococci, meat and cheese being the most contaminated. E. faecium was the predominant species, followed by E. faecalis, E. casseliflavus and Enterococcus gallinarum. Phenotypic tests indicated that 67.7% of isolates hydrolyzed bile salts, 15.2% produced bacteriocin, 12.0% were beta-hemolytic and 18.2% produced gelatinase. Antibiotic resistance (gentamicin, tetracycline and erythromycin) and genes encoding for virulence traits were more frequent in E. faecalis than in E. faecium. Three E. faecium isolates were resistant to vancomycin. Among antibiotic-resistant isolates, 72.4% of E. faecalis were able to form biofilm and 13.8% to adhere to Caco-2 cells. Antibiotic-resistant E. faecalis and E. faecium isolates were grouped by RAPD-PCR and a scattered distribution was noted, indicating that resistance was not related to a particular clone. The spread of virulence/resistance traits in isolates of the two species and different RAPD-types suggest the pathogenic potential of both species. By contrast, the recovery of bacteriocinogenic E. faecium isolates with no virulence traits suggests their potential for biotechnological applications. In conclusion, our results showed that enterococci from Brazilian foods present important dualist aspects for food safety. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Closantel binds to the serum proteins of the host and affects blood sucking parasites when they ingest the brood of treated hosts. Closantel binds specifically to ovine serum albumin (K-a of 9.3 x 10(6)M(-1)) at site I, the warfarin/phenylbutazone binding site of albumin Closantel also binds to invertebrate haemocyanin and haemolymph. The strongest binding of closantel in homogenates of H. contortus is found in fractions containing soluble proteins. This binding is of low affinity and, because the site itself is not fully denaturable, it may not be proteinaceous. There is no detectable difference in binding affinity between homogenate fractions from closantel susceptible and resistant isolates of adult or larval worms suggesting that closantel resistance is not due to changes in the closantel receptor or carrier. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To evaluate nosocomial infections due to imipenem-resistant and imipenem-susceptible Pseudomonas aeruginosa, a case-control study that included genotyping was performed. Hospitalization for more than 15 days was independently associated with infection with an imipenem-resistant organism. Sixty-seven percent of the imipenem-resistant isolates analyzed and 23% of the imipenem-susceptible isolates analyzed belonged to a single clone. Intervention led to a decrease in the number of infections due to imipenem-resistant and imipenem-susceptible P. aeruginosa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Tuberculous meningitis (TBM) is a growing problem in HIV-infected patients in developing countries, where there is scarce data about this co-infection. Our objectives were to analyze the main features and outcomes of HIV-infected patients with TBM. Methods: This was a retrospective study of HIV-infected Brazilian patients admitted consecutively for TBM. All patients had Mycobacterium tuberculosis isolated from the cerebrospinal fluid (CSF). Presenting clinical and laboratory features were studied. Multivariate analysis was used to identify variables associated with death during hospitalization and at 9 months after diagnosis. Survival was estimated using the Kaplan-Meier method. Results: We included 108 cases (median age 36 years, 72% male). Only 15% had fever, headache, and meningeal signs simultaneously. Forty-eight percent had extrameningeal tuberculosis. The median CD4+ cell count was 65 cells/mu l. Among 90 cases, 7% had primary resistance to isoniazid and 9% presented multidrug-resistant strains. The overall mortality during hospitalization was 29% and at 9 months was 41%. Tachycardia and prior highly active antiretroviral therapy (HAART) were associated with 9-month mortality. The 9-month survival rate was 22% (95% confidence interval 12-43%). Conclusions: Clinical and laboratory manifestations were unspecific. Disseminated tuberculosis and severe immunosuppression were common. Mortality was high and the 9-month survival rate was low. Tachycardia and prior HAART were associated with death within 9 months of diagnosis. (C) 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated ruing laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoa Trichomonas, Entamoeba, and Giardia is described, Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log, drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 muM indicated metronidazole-sensitive and highly clinically resistant isolates of T. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and > 200 muM. MICs (1 day) of 12.5 to 25 muM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 muM for metronidazole-sensitive isolates to 50 muM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trials conducted in Queensland, Australia between 1997 and 2002 demonstrated that fungicides belonging to the triazole group were the most effective in minimising the severity of infection of sorghum by Claviceps africana, the causal agent of sorghum ergot. Triadimenol ( as Bayfidan 250EC) at 0.125 kg a. i./ha was the most effective fungicide. A combination of the systemic activated resistance compound acibenzolar-S-methyl ( as Bion 50WG) at 0.05 kg a. i./ha and mancozeb ( as Penncozeb 750DF) at 1.5 kg a. i./ha has the potential to provide protection against the pathogen, should triazole-resistant isolates be detected. Timing and method of fungicide application are important. Our results suggest that the triazole fungicides have no systemic activity in sorghum panicles, necessitating the need for multiple applications from first anthesis to the end of flowering, whereas acibenzolar-S-methyl is most effective when applied 4 days before flowering. The flat fan nozzles tested in the trials provided higher levels of protection against C. africana and greater droplet deposition on panicles than the tested hollow cone nozzles. Application of triadimenol by a fixed wing aircraft was as efficacious as application through a tractor-mounted boom spray.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the constant development of new antibiotics, selective pressure is a force to reckon when investigating antibiotic resistance. Although advantageous for medical treatments, it leads to increasing resistance. It is essential to use more potent and toxic antibiotics. Enzymes capable of hydrolyzing antibiotics are among the most common ways of resistance and TEM variants have been detected in several resistant isolates. Due to the rapid evolution of these variants, complex phenotypes have emerged and the need to understand their biological activity becomes crucial. To investigate the biochemical properties of TEM-180 and TEM-201 several computational methodologies have been used, allowing the comprehension of their structure and catalytic activity, which translates into their biological phenotype. In this work we intent to characterize the interface between these proteins and the several antibiotics used as ligands. We performed explicit solvent molecular dynamics (MD) simulations of these complexes and studied a variety of structural and energetic features. The interfacial residues show a distinct behavior when in complex with different antibiotics. Nevertheless, it was possible to identify some common Hot Spots among several complexes – Lys73, Tyr105 and Glu166. The structural changes that occur during the Molecular Dynamic (MD) simulation lead to the conclusion that these variants have an inherent capacity of adapting to the various antibiotics. This capability might be the reason why they can hydrolyze antibiotics that have not been described until now to be degraded by TEM variants. The results obtained with computational and experimental methodologies for the complex with Imipenem have shown that in order to this type of enzymes be able to acylate the antibiotics, they need to be capable to protect the ligand from water molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The principal aim of this study was to investigate the possibility of transference to Escherichia coli of β-lactam resistance genes found in bacteria isolated from ready-to-eat (RTE) Portuguese traditional food. From previous screenings, 128 β-lactam resistant isolates (from different types of cheese and of delicatessen meats), largely from the Enterobacteriaceae family were selected and 31.3% of them proved to transfer resistance determinants in transconjugation assays. Multiplex PCR in donor and transconjugant isolates did not detect bla CTX, bla SHV and bla OXY, but bla TEM was present in 85% of them, while two new TEMs (TEM-179 and TEM-180) were identified in two isolates. The sequencing of these amplicons showed identity between donor and transconjugant genes indicating in vitro plasmid DNA transfer. These results suggest that if there is an exchange of genes in natural conditions, the consumption of RTE foods, particularly with high levels of Enterobacteriaceae, can contribute to the spread of antibiotic resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds I, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC <= 0.28 mu M), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (Le., 6.9 vs. 43.8 mu M). All compounds were ineffective against H37Rv(INH) (Delta katG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comparison of the Etest and the reference broth macrodilution susceptibility test for fluconazole, ketoconazole, itraconazole and amphotericin B was performed with 59 of Candida species isolated from the oral cavities of AIDS patients. The Etest method was performed according to the manufacturer's instructions, and the reference method was performed according to National Committee for Clinical Laboratory Standards document M27-A guidelines. Our data showed that there was a good correlation between the MICs obtained by the Etest and broth dilution methods. When only the MIC results at ± 2 dilutions for both methods were considered, the agreement rates were 90.4% for itraconazole, ketoconazole and amphotericin B and 84.6% for fluconazole of the C. albicans tested. In contrast, to the reference method, the Etest method classified as susceptible three fluconazole-resistant isolates and one itraconazole-resistant isolate, representing four very major errors. These results indicate that Etest could be considered useful for antifungal sensitivity evaluation of yeasts in clinical laboratories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Biologia