980 resultados para moving images
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.
Resumo:
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
Resumo:
We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
While the indirect and direct cost of occupational musculoskeletal disorders (MSD) causes a significant burden on the health system, lower back pain (LBP) is associated with a significant portion of MSD. In Australia, the highest prevalence of MSD exists for health care workers, such as nurses. The digital human model (DHM) Siemens JACK was used to investigate if hospital bed pushing, a simple task and hazard that is commonly associated with LBP, can be simulated and ergonomically assessed in a virtual environment. It was found that while JACK has implemented a range of common physical work assessment methods, the simulation of dynamic bed pushing remains a challenge due to the complex interface between the floor and wheels, which can only be insufficiently modelle
Resumo:
Over the last several years, Australian media magnate Kerry Packer has sought to maximise the value of the intellectual property assets of the television station Channel Nine. He has made a concerted effort to expand the scope of copyright protection over television broadcasts screened. The television station Channel Nine has taken a number of legal actions against its rivals and competitors - including the Australian Broadcasting Corporation and Network Ten. It has alleged that the broadcasters have used substantial parts of copyrighted television broadcasts without their permission.
Resumo:
In this article, we investigate the complex relationship between concerns about children and young people’s exposure to cinema in 1920s Australia and the use of film in education. In part, the Royal Commission into the Moving Picture Industry in Australia aimed to ‘ascertain the effect and the extent of the power of film upon juveniles’ and Commissioners spoke to educationalists, psychologists, medical professions, police officers and parents to gain insight into the impacts of movies on children. Numerous issues were canvassed in the Commission hearings such as exposure to sexual content, ‘excesses’ in film content, children’s inability to concentrate at school following cinema attendance and the influence of cinema on youth crime. While the Commission ultimately suggested it was parents’ role to police children’s engagements with cinema, it did make recommendations for restricting children’s access to films with inappropriate themes. Meanwhile, the Commission was very positive about film’s educational role stating that ‘the advantage to be gained by the use of the cinematograph as an adjunct to educational methods should be assisted in every possible way by the Commonwealth’. We draw on the Commission’s minutes of evidence, the Commission report and newspaper articles form the 1920s to the 1940s to argue that the Commission provides valuable insight into the beginnings of the use of screen content in formal schooling, both as a resource across the curriculum and as a specific focus of education through film appreciation and, later, broader forms of media education. The article argues debates about screen entertainment and education rehearsed in the Commission are reflected today as parents, concerned citizens and educators ponder the dangers and potential of new media technologies and media content used by children and young people such as video games, social media and interactive content.
Resumo:
This study proposes that the adoption process of complex-wide systems (e.g. cloud ERP) should be observed as multi-stage actions. Two theoretical lenses were utilised for this study with critical adoption factors identified through the theory of planned behaviour and the progression of each adoption factor observed through Ettlie's (1980) multi-stage adoption model. Together with a survey method, this study has employed data gathered from 162 decision-makers of small and medium-sized enterprises (SMEs). Using both linear and non-linear approaches for the data analysis, the study findings have shown that the level of importance for adoption factors changes across different adoption stages.
Resumo:
Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.
Resumo:
This paper is the second in a two-part series that maps continuities and ruptures in conceptions of power and traces their effects in educational discourse on 'the child'. It delineates two post-Newtonian intellectual trajectories through which concepts of 'power' arrived at the theorization of 'the child': the paradoxical bio-physical inscriptions of human-ness that accompanied mechanistic worldviews and the explanations for social motion in political philosophy. The intersection of pedagogical theories with 'the child' and 'power' is further traced from the latter 1800s to the present, where a Foucaultian analytics of power-as-effects is reconsidered in regard to histories of motion. The analysis culminates in an examination of post-Newtonian (dis)continuities in the theorization of power, suggesting some productive paradoxes that inhabit turn of the 21st-century conceptualizations of the social.