383 resultados para mould


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Study was designed to investigate impact of tannins on in vitro ruminal fermentation parameters as well as relationships between concentration and in vitro biological activity of tannins present in tree fruits. Dry and mature fruits of known phenolic content harvested from Acacia nilotica, A. erubescens, A. erioloba, A. sieberiana, Piliostigima thonningii and Dichrostachys cinerea tree species were fermented with rumen fluid in vitro with or without polyethylene glycol (PEG). Correlation between in vitro biological activity and phenolic concentration was determined. Polyethylene glycol inclusion increased Cumulative gas production from all fruit substrates. The largest Increase (225%) after 48 h incubation was observed in D. cinerea fruits while the least (12.7%) increase was observed in A. erubescens fruits. Organic matter degradability (48 h) was increased by PEG inclusion for all tree species except A. erubescens and P. thonningii. For D. cinerea fruits, colorimetric assays were poorly correlated to Increases In gas production due to PEG treatment. Ytterbium precipitable phenolics (YbPh) were also poorly correlated with response to PEG for A. erioloba and P. thonningii fruits. However, YbPh were strongly and positively correlated to the increase In Cumulative gas production due to PEG for A. erubescens and A. nilotica. Folin-Ciocalteau assayed phenolics (SPh) were not correlated to response to PEG in P. thonningii and A. sieberiana. It was Concluded that the PEG effect oil in vitro fermentation was closely related to some measures of phenolic concentration but the relationships varied with tree species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the potential of the goat's ruminal adaptation to reduce the negative effect of tannins on in vitro fermentation. Rumen fluid was obtained from goats fed a mixture of tannin-containing tree fruits (adapted rumen fluid) or tannin-free commercial protein supplements (unadapted rumen fluid) for 85 days. Dry, mature fruits of Acacia nilotica, Acacia erubescens, Acacia erioloba, Dichrostachys cinerea and Piliostigma thonningii were used as substrates for the in vitro fermentation. The effectiveness of adapted rumen fluid to ferment tannin-containing substrates was compared to the extent of fermentation when tannins were inactivated with polyethylene glycol (PEG), a known tannin-binding agent. Adapted rumen fluid (P < 0.05) increased gas production from all five substrates between 15.8% and 73.7%. In A. nilotica, D. cinerea and P thonningii, this increase was less than that obtained through PEG treatment. When PEG was added to adapted rumen fluid a further improvement in extent of fermentation was observed in four out of the five fruit samples. The largest PEG effect when incubated with adapted rumen fluid was observed in A. nilotica (43.1%) and D. cinerea (42.9%) fruits. It is concluded that some tannin-rich feedstuffs may still benefit from treatment even when these are offered to adapted animals. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the potential of Dichrostachys cinerea fruits as a protein supplement in semi-arid areas of Zimbabwe. The tanniniferous fruits were treated with aqueous solutions of polyethylene glycol (PEG) or sodium hydroxide (NaOH). Both treatments increased the soluble fraction, rate of degradation and effective degradability (ED) of nitrogen (N) in sacco. The PEG effects were higher than the NaOH effects (e.g. a 25% vs. 6% increase in effective N degradabilities, respectively). Five treatments were evaluated in a N-balance trial using Matebele goats: ground, PEG- or NaOH-treated D. cinerea fruits, a commercial protein supplement (CPS) and no supplement. Animals offered ground fruits or CPS retained most N (3.7 or 4.1 g N/day, respectively), while those offered NaOH- or PEG-treated fruits retained significantly less N (2.7 or 1.0 g/day, respectively). Unsupplemented animals were in negative N balance (-2.4 g/day). PEG treatment deactivated the tannins more than the NaOH treatment. PEG treatment resulted in excessive protein degradation in the rumen leading to high urine N loss. It is concluded that the D. cinerea fruits were beneficial for goat N-nutrition and that the tannins did not require inactivation. D. cinerea fruits can, therefore, replace the expensive commercial protein supplement. It is also suggested that the collection and grinding of fruits could be used as a management tool to control bush encroachment. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the ideal method of assessing the nutritive value of a feedstuff, namely offering it to the appropriate class of animal and recording the production response obtained, is neither practical nor cost effective a range of feed evaluation techniques have been developed. Each of these balances some degree of compromise with the practical situation against data generation. However, due to the impact of animal-feed interactions over and above that of feed composition, the target animal remains the ultimate arbitrator of nutritional value. In this review current in vitro feed evaluation techniques are examined according to the degree of animal-feed interaction. Chemical analysis provides absolute values and therefore differs from the majority of in vitro methods that simply rank feeds. However, with no host animal involvement, estimates of nutritional value are inferred by statistical association. In addition given the costs involved, the practical value of many analyses conducted should be reviewed. The in sacco technique has made a substantial contribution to both understanding rumen microbial degradative processes and the rapid evaluation of feeds, especially in developing countries. However, the numerous shortfalls of the technique, common to many in vitro methods, the desire to eliminate the use of surgically modified animals for routine feed evaluation, paralleled with improvements in in vitro techniques, will see this technique increasingly replaced. The majority of in vitro systems use substrate disappearance to assess degradation, however, this provides no information regarding the quantity of derived end-products available to the host animal. As measurement of volatile fatty acids or microbial biomass production greatly increases analytical costs, fermentation gas release, a simple and non-destructive measurement, has been used as an alternative. However, as gas release alone is of little use, gas-based systems, where both degradation and fermentation gas release are measured simultaneously, are attracting considerable interest. Alternative microbial inocula are being considered, as is the potential of using multi-enzyme systems to examine degradation dynamics. It is concluded that while chemical analysis will continue to form an indispensable part of feed evaluation, enhanced use will be made of increasingly complex in vitro systems. It is vital, however, the function and limitations of each methodology are fully understood and that the temptation to over-interpret the data is avoided so as to draw the appropriate conclusions. With careful selection and correct application in vitro systems offer powerful research tools with which to evaluate feedstuffs. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current gas-based in vitro evaluation systems are extremely powerful research techniques. However they have the potential to generate a great deal more than simple fermentation dynamics. Details from four experiments are presented in which adaptation, and novel application, of an in vitro system allowed widely differing objectives to be examined. In the first two studies, complement methodologies were utilised. In such assays, an activity or outcome is inferred through the occurrence of a secondary event rather than by direct observation. Using an N-deficient incubation medium, the increase in starch fermentation, when supplemented with individual amino acids (i.e., known level of N) relative to that of urea (i.e., known quantity and N availability), provided an estimate of their microbial utilisation. Due to the low level of response observed with some arnino acids (notably methionine and lysine), it was concluded, that they may not need to be offered in a rumen-inert form to escape rumen microbial degradation. In another experiment, the extent to which degradation of plant cell wall components was inhibited by lipid supplementation was evaluated using fermentation gas release profiles of washed hay. The different responses due to lipid source and level of inclusion suggested that the degree of rumen protection required to ameliorate this depression was supplement dependent. That in vitro inocula differ in their microbial composition is of little interest per se, as long as the outcome is the same (i.e., that similar substrates are degraded at comparable rates and end-product release is equivalent). However where a microbial population is deficient in a particular activity, increasing the level of inoculation will have no benefit. Estimates of hydrolytic activity were obtained by examining fermentation kinetics of specific substrates. A number of studies identified a fundamental difference between rumen fluid and faecal inocula, with the latter having a lower fibrolytic activity, which could not be completely attributed to microbial numbers. The majority of forage maize is offered as an ensiled feed, however most of the information on which decisions such as choice of variety, crop management and harvesting date are made is based on fresh crop measurements. As such, an attempt was made to estimate ensiled maize quality from an in vitro analysis of the fresh crop. Fermentation profiles and chemical analysis confirmed changes in crop composition over the growing season, and loss of labile carbohydrates during ensiling. In addition, examination of degradation residues allowed metabolizable energy (ME) contents to be estimated. Due to difficulties associated with starch analysis, the observation that this parameter could be predicted by difference (together with an assumed degradability), allowed an estimate of ensiled maize ME to be developed from fresh material. In addition, the contribution of the main carbohydrates towards ME showed the importance of delaying harvest until maximum starch content has been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review considers microbial inocula used in in vitro systems from the perspective of their ability to degrade or ferment a particular substrate, rather than the microbial species that it contains. By necessity, this required an examination of bacterial, protozoal and fungal populations of the rumen and hindgut with respect to factors influencing their activity. The potential to manipulate these populations through diet or sampling time are examined, as is inoculum preparation and level. The main alternatives to fresh rumen fluid (i.e., caecal digesta or faeces) are discussed with respect to end-point degradabilities and fermentation dynamics. Although the potential to use rumen contents obtained from donor animals at slaughter offers possibilities, the requirement to store it and its subsequent loss of activity are limitations. Statistical modelling of data, although still requiring a deal of developmental work, may offer an alternative approach. Finally, with respect to the range of in vitro methodologies and equipment employed, it is suggested that a degree of uniformity could be obtained through generation of a set of guidelines relating to the host animal, sampling technique and inoculum preparation. It was considered unlikely that any particular system would be accepted as the 'standard' procedure. However, before any protocol can be adopted, additional data are required (e.g., a method to assess inoculum 'quality' with respect to its fermentative and/or degradative activity), preparation/inoculation techniques need to be refined and a methodology to store inocula without loss of efficacy developed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The requirement to rapidly and efficiently evaluate ruminant feedstuffs places increased emphasis on in vitro systems. However, despite the developmental work undertaken and widespread application of such techniques, little attention has been paid to the incubation medium. Considerable research using in vitro systems is conducted in resource-poor developing countries that often have difficulties associated with technical expertise, sourcing chemicals and/or funding to cover analytical and equipment costs. Such limitations have, to date, restricted vital feed evaluation programmes in these regions. This paper examines the function and relevance of the buffer, nutrient, and reducing solution components within current in vitro media, with the aim of identifying where simplification can be achieved. The review, supported by experimental work, identified no requirement to change the carbonate or phosphate salts, which comprise the main buffer components. The inclusion of microminerals provided few additional nutrients over that already supplied by the rumen fluid and substrate, and so may be omitted. Nitrogen associated with the inoculum was insufficient to support degradation and a level of 25 mg N/g substrate is recommended. A sulphur inclusion level of 4-5 mg S/g substrate is proposed, with S levels lowered through omission of sodium sulphide and replacement of magnesium sulphate with magnesium chloride. It was confirmed that a highly reduced medium was not required, provided that anaerobic conditions were rapidly established. This allows sodium sulphide, part of the reducing solution, to be omitted. Further, as gassing with CO2 directly influences the quantity of gas released, it is recommended that minimum CO, levels be used and that gas flow and duration, together with the volume of medium treated, are detailed in experimental procedures. It is considered that these simplifications will improve safety and reduce costs and problems associated with sourcing components, while maintaining analytical precision. (c) 2005 Elsevier B.V. All rights reserved.