695 resultados para mobile learning technologies


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we present a didactic experience developed by the GIE (Group of Educational Innovation) “Pensamiento Matemático” of the Polytechnics University of Madrid (UPM), in order to bring secondary students and university students closer to Mathematics. It deals with the development of a virtual board game called Mate-trivial. The mechanics of the game is to win points by going around the board which consists of four types of squares identified by colours: “Statistics and Probability”, “Calculus and Analysis”, “Algebra and Geometry” and “Arithmetic and Number Theory ”. When landing on a square, a question of its category is set out: a correct answer wins 200 points, if wrong it loses 100 points, and not answering causes no effect on the points, but all the same, two minutes out of the 20 minutes that each game lasts are lost. For the game to be over it is necessary, before those 20 minutes run out, to reach the central square and succeed in the final task: four chained questions, one of each type, which must be all answered correctly. It is possible to choose between two levels to play: Level 1, for pre-university students and Level 2 for university students. A prototype of the game is available at the website “Aula de Pensamiento Matemático” developed by the GIE: http://innovacioneducativa.upm.es/pensamientomatematico/. This activity lies within a set of didactic actions which the GIE is developing in the framework of the project “Collaborative Strategies between University and Secondary School Education for the teaching and learning of Mathematics: An Application to solve problems while playing”, a transversal project financed by the UPM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Higher education students demand fast feedback about their assignments and the opportunity to repeat them in case they do in a wrong way. Here a computer based trainer for Signals and Systems students is presented. An application, that automatically generates and assesses thousands of numerically different versions of several Signals and Systems problems have been developed. This applet guides the students to find the solution and automatically assesses and grades the students proposed solution. The students can use the application to practice in solving several types of Signals and Systems basic problems. After selecting the problem type, the student introduces a seed and the application generates a numerical version of the selected problem. Then the application presents a sequence of questions that the students must solve and the application automatically assess their answers. After solving a given problem, the students can repeat the same numerical variation of the problem by introducing the same seed to the application. In this way, they can review their solution with the help of the hints given by the application for wrong solutions. This application can also be used as an automatic assessment tool by the instructor. When the assessment is made in a controlled environment (examination classroom or laboratory) the instructor can use the same seed for all students. Otherwise, different seeds can be assigned to different students and in this way they solve different numerical variation of the proposed problem, so cheating becomes an arduous task. Given a problem type, the mathematical or conceptual difficulty of the problem can vary depending on the numerical values of the parameters of the problem. The application permits to easily select groups of seeds that yield to numerical variations with similar mathematical or conceptual difficulty. This represents an advantage over a randomised task assignment where students are asked to solve tasks with different difficulty.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Reinforcement of Building Structures is one of the topics of the Master in Building Innovation Technology (MBIT) of Universidad Politécnica de Madrid (UPM). Since the beginning of the delivery of this master, case studies have been chosen as the teaching methodology. For the 2011-2012 course the online education of this subject was implemented, instead of the classical learning based on attendance. Through ICT’s (Information and Communication Technologies) students are provided with much more and more selective information than through the classical learning. ICT’s can be used for search, enquiries and reporting. Using the online tools has been proved, through the results obtained and based on the surveys made amongst students, to be a successful experience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that cross-curricular competences are required for main companies all over the world to be part of our university graduates as technical knowledge does. That is the reason which has led the university structure to include these competences in the every degree curriculo validated since the European Higher Education Area (EHEA)was introduced in the Spanish university context. But the way used for incorporating them has been developed without the necessary guidelines to generate a qualified model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Automatic Control Teaching in the new degree syllabus has reduced both, its contents and its implementation course, with regard to traditional engineering careers. On the other hand, where the qualification is not considered as automatic control specialist, it is required an adapted methodology to provide the minimum contents that the student needs to assimilate, even in the case that students do not perceive these contents as the most important in their future career. In this paper we present the contents of a small automatic course taught Naval Architecture and Marine Engineering Degrees at the School of Naval Engineering of the Polytechnic University of Madrid. We have included the contents covered using the proposed methodology which is based on practical work after lectures. Firstly, the students performed exercises by hand. Secondly, they solve the exercises using informatics support tools, and finally, they validate their previous results and their knowledge in the laboratory platforms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the response of mechanical systems to external excitations, even in the simplest cases, involves solving second-order ordinary differential equations or systems thereof. Finding the natural frequencies of a system and understanding the effect of variations of the excitation frequencies on the response of the system are essential when designing mechanisms [1] and structures [2]. However, faced with the mathematical complexity of the problem, students tend to focus on the mathematical resolution rather than on the interpretation of the results. To overcome this difficulty, once the general theoretical problem and its solution through the state space [3] have been presented, Matlab®[4] and Simulink®[5] are used to simulate specific situations. Without them, the discussion of the effect of slight variations in input variables on the outcome of the model becomes burdensome due to the excessive calculation time required. Conversely, with the help of those simulation tools, students can easily reach practical conclusions and their evaluation can be based on their interpretation of results and not on their mathematical skills

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La realidad aumentada educativa es una tecnología que actualmente está mejorando la calidad de enseñanza, la utilización de dispositivos móviles permite que el estudiante sea protagonista de su aprendizaje sin estar confinado a un espacio o tiempo específico para aprender. Aplicaciones colaborativas con realidad aumentada están siendo empleadas cada vez más en la educación, de tal forma que fomentan el trabajo en grupo donde los estudiantes comparten conocimiento, dudas, opiniones logrando un mejor nivel cognitivo que trabajando individualmente. En este trabajo se presenta el estado de la cuestión de Aplicaciones Educativas con Realidad Aumentada en dispositivos móviles, y Aplicaciones Educativas colaborativas con Realidad Aumentada, desarrolladas desde el 2002 e implementadas en instituciones educativas. Así mismo se realiza un estudio sobre la Realidad Aumentada, Realidad Aumentada móvil y Aprendizaje Móvil. Además, a partir de las características del estudio de las aplicaciones con Realidad Aumenta, se realiza un análisis y diseño de una Aplicación Móvil para el proyecto de inicio de los alumnos de nuevo ingreso de la UPM. Así como también una herramienta de autoría para las gestiones de las actividades propuestas por los docentes de la UPM. Finalmente se presenta un caso de prueba en el que se implementa parte de la propuesta de este trabajo, logrando construir un parte funcional para el proyecto inicial denominado PIANI – UPM. ---ABSTRACT---Educational Augmented reality is a technology that is improving the quality of teaching, use of mobile devices enables the student to be protagonists of their learning without being confined to a specific space or time to learn. Collaborative augmented reality applications applied in education are being used gradually encourage group work where students share knowledge, doubts, opinions so they achieve better cognitive level than working individually. In this paper the description of educational applications is presented with Augmented Reality using mobile devices, and collaborative educational Augmented Reality applications, developed since 2002 and implemented in educational institutions. Also a study on Augmented Reality, Mobile Augmented Reality and Mobile Learning is performed. Furthermore, from the study of the characteristics of Reality applications increases, an analysis and design of a mobile application for the proposed start of new students of UPM is performed. As well as an authoring tool for the efforts of the activities proposed by the teachers of the UPM. Finally a test case is presented in which part of the proposal of this work is implemented, obtaining building an initial prototype called PIANI - UPM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este proyecto describe la metodología a seguir para conectar la plataforma Arduino a dispositivos Android y establecer una conexión que permita controlar dicha plataforma. Sobre Arduino se acoplará un módulo 3G que permitirá hacer uso de funcionalidades propias de los teléfonos móviles. El objetivo final del proyecto era el control del módulo 3G mediante comandos AT enviados desde un dispositivo Android (tableta) conectado a través de USB. Para ello, se ha desarrollado una aplicación de demostración que permite el uso de algunas de las funcionalidades de comunicación del módulo 3G. Para alcanzar el objetivo propuesto se ha investigado sobre temas tales como: internet de las cosas, las tecnologías de comunicaciones móviles, el sistema operativo Android y el desarrollo de aplicaciones móviles, la plataforma Arduino, el funcionamiento del módulo 3G y sobre la comunicación serie que permitirá comunicarse entre Android y módulo 3G. El proyecto proporciona una guía de iniciación con explicaciones de los diferentes dispositivos, tecnologías y pasos a seguir para la integración de las diferentes plataformas que se han usado en el proyecto: Arduino, Módulo de comunicaciones 3G, y Android. ABSTRACT. This project describes the methodology to connect the Arduino platform to Android devices and establish a connection to allow the platform control. A 3G module will be engaged on Arduino allowing the usage of mobile phones functionalities. The main objective of the project was the control of 3G module through AT commands sent from an Android device (tablet) connected via USB. For that, a demonstration application was developed to permit the use of some communication features of 3G module. To achieve the target, an investigation has been carried out about issues such as: internet of things, mobile communications technologies, the Android operating system and mobile applications development, the Arduino platform, the 3G module operation and serial communication that allows the communication between Android and the 3G module. The project provides a starter guide with explanations of the different devices, technologies and steps for the integration of the different platforms that have been used in the project: Arduino, 3G communications module and Android.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to present the experience of using lecture recordings to support curriculum changes within the framework of the European convergence process, mainly courses that need to be promoted or discontinued. We will explain an integrated solution for recording lectures consisting of a web portal, a videoconferencing tool and an economical and easily transportable kit. The validation process was performed recording three different courses at the Universidad Politécnica of Madrid (UPM) and using different diffusion channels, such as Moodle, an open source web portal called GlobalPlaza that supports streaming and recordings and the YouTube UPM channel. To assess the efficiency of our solution, a formal evaluation was conducted and will be also presented in this paper. The results show that lecture recordings allow teachers to support discontinued and new courses and enable students from remote areas to participate in international educational programmes, also the resulting recordings will be used as learning objects for future virtual courses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The European Union has been promoting linguistic diversity for many years as one of its main educational goals. This is an element that facilitates student mobility and student exchanges between different universities and countries and enriches the education of young undergraduates. In particular,a higher degree of competence in the English language is becoming essential for engineers, architects and researchers in general, as English has become the lingua franca that opens up horizons to internationalisation and the transfer of knowledge in today’s world. Many experts point to the Integrated Approach to Contents and Foreign Languages System as being an option that has certain benefits over the traditional method of teaching a second language that is exclusively based on specific subjects. This system advocates teaching the different subjects in the syllabus in a language other than one’s mother tongue, without prioritising knowledge of the language over the subject. This was the idea that in the 2009/10 academic year gave rise to the Second Language Integration Programme (SLI Programme) at the Escuela Arquitectura Tecnica in the Universidad Politecnica Madrid (EUATM-UPM), just at the beginning of the tuition of the new Building Engineering Degree, which had been adapted to the European Higher Education Area (EHEA) model. This programme is an interdisciplinary initiative for the set of subjects taught during the semester and is coordinated through the Assistant Director Office for Educational Innovation. The SLI Programme has a dual goal; to familiarise students with the specific English terminology of the subject being taught, and at the same time improve their communication skills in English. A total of thirty lecturers are taking part in the teaching of eleven first year subjects and twelve in the second year, with around 120 students who have voluntarily enrolled in a special group in each semester. During the 2010/2011 academic year the degree of acceptance and the results of the SLI Programme are being monitored. Tools have been designed to aid interdisciplinary coordination and to analyse satisfaction, such as coordination records and surveys. The results currently available refer to the first semester of the year and are divided into specific aspects of the different subjects involved and into general aspects of the ongoing experience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Innovative teaching experimental activities for secondary school students have been developed in order to introduce some aerodynamic concepts, with the aim of making science subjects such as mathematics and physics more attractive. Post-graduate students of Universidad Politécnica de Madrid (UPM) and teachers of Deutsche Schule Madrid (DSM) have constructed a small wind tunnel. The main goal has been to provide a tool for secondary school students to become familiar with the scientific method developing curiosity, imagination, initiative, critical thinking and problem-solving skills. Students of DSM have performed wind tunnel experiments, resulting in a successful and amusing experience. The students were able to relate the experimental results obtained with the physic principle of flight, previously explained in class. Evaluations reveal that both, the teacher and the students, considered the experience as interesting and helpful to lead with teaching physics, mathematics and engineering sciences. The teacher observed the strong motivation factor developed for the students to continue learning engineering sciences. Some of the students expressed that this experience had changed their prejudices about physics and mathematics, based only on theoretical approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The educational realm in Urban Plan ning needs a review because of the global challenges that human settlements will face in the near futu re. In this scenario, international boards of research call for the development of common frameworks of research, accredita tion, and planning best-pra ctices, that need to transcend the limits of local competences, which at the same time affect educational structures. A central issue on achieving this pursued consensus is in ternational cooperation among academic institutions, seeking global awareness on urban challenges, built equally upon a variety of context-based experiences. The rise of ICT's and digital tools are widely perceived as a great field of opportunity to establish complex and de-centralized networks of knowledge-bu ilding that can be critical to address these needs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Póster presentado en EDULEARN12, International Conference on Education and New Learning Technologies, Barcelona, 2nd-4th July 2012.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reverse engineering is the process of discovering the technological principles of a device, object or system through analysis of its structure, function, and operation. From a device used in clinical practice, as the corneal topographer, reverse engineering will be used to infer physical principles and laws. In our case, reverse engineering involves taking this mechanical device apart and analyzing its working detail. The initial knowledge of the application and usefulness of the device provides a motivation that, together with the combination of theory and practice, will help the students to understand and learn concepts studied in different subjects in the Optics and Optometry degree. These subjects belong to both the core and compulsory subjects of the syllabus of first and second year of the degree. Furthermore, the experimental practice is used as transverse axis that relates theoretical concepts, technology transfer and research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Virtual and remote laboratories (VRLs) are e-learning resources that enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. This paper describes the extension of two open source tools: (1) the learning management system Moodle, and (2) the tool to create VRLs Easy Java Simulations (EJS). Our extension provides: (1) synchronous collaborative support to any VRL developed with EJS (i.e., any existing VRL written in EJS can be automatically converted into a collaborative lab with no cost), and (2) support to deploy synchronous collaborative VRLs into Moodle. Using our approach students and/or teachers can invite other users enrolled in a Moodle course to a real-time collaborative experimental session, sharing and/or supervising experiences at the same time they practice and explore experiments using VRLs.