891 resultados para lipid microparticles
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
The basidiospores of Pisolithus sp. contain large amounts of lipids, indicating provision for future germination in the host rhizosphere. However, the accumulation, composition, and mobilization of lipids during formation and germination of these spores are largely unknown. In this study, lipid storage and fatty acid composition during basidiosporogenesis were analyzed in fresh basidiocarps using bright-field microscopy and gas chromatography. Abundant lipid bodies are found in the hyphae, basidia, and basidiospores of fungal basidiocarps. This evidences a considerable C transport in the basidiocarp to meet the C demand during basidiospore formation. Fatty acid composition analysis revealed the presence of 24 compounds with chains of 9 to 18 C atoms, either saturated or insaturated, with one or two insaturations. The fatty acid composition and content varied according to the developmental stage of the peridioles. In free basidiospores, the predominant compounds were 16:0, 16:1w5c, 18:1w9c, and 18:2w6,9c/18:0ante, at concentrations of 76, 46, 192, and 51 µg g-1 dry matter, respectively. Our results indicate that oleic acid is the major constituent of lipid reserves in Pisolithus sp. basidiospores. Further studies are being conducted to determine the factors that induce lipid mobilization during spore germination.
Resumo:
BACKGROUND: Because of the known relationship between exposure to combination antiretroviral therapy and cardiovascular disease (CVD), it has become increasingly important to intervene against risk of CVD in human immunodeficiency virus (HIV)-infected patients. We evaluated changes in risk factors for CVD and the use of lipid-lowering therapy in HIV-infected individuals and assessed the impact of any changes on the incidence of myocardial infarction. METHODS: The Data Collection on Adverse Events of Anti-HIV Drugs Study is a collaboration of 11 cohorts of HIV-infected patients that included follow-up for 33,389 HIV-infected patients from December 1999 through February 2006. RESULTS: The proportion of patients at high risk of CVD increased from 35.3% during 1999-2000 to 41.3% during 2005-2006. Of 28,985 patients, 2801 (9.7%) initiated lipid-lowering therapy; initiation of lipid-lowering therapy was more common for those with abnormal lipid values and those with traditional risk factors for CVD (male sex, older age, higher body mass index [calculated as the weight in kilograms divided by the square of the height in meters], family and personal history of CVD, and diabetes mellitus). After controlling for these, use of lipid-lowering drugs became relatively less common over time. The incidence of myocardial infarction (0.32 cases per 100 person-years [PY]; 95% confidence interval [CI], 0.29-0.35 cases per 100 PY) appeared to remain stable. However, after controlling for changes in risk factors for CVD, the rate decreased over time (relative rate in 2003 [compared with 1999-2000], 0.73 cases per 100 PY [95% CI, 0.50-1.05 cases per 100 PY]; in 2004, 0.64 cases per 100 PY [95% CI, 0.44-0.94 cases per 100 PY]; in 2005-2006, 0.36 cases per 100 PY [95% CI, 0.24-0.56 cases per 100 PY]). Further adjustment for lipid levels attenuated the relative rates towards unity (relative rate in 2003 [compared with 1999-2000], 1.06 cases per 100 PY [95% CI, 0.63-1.77 cases per 100 PY]; in 2004, 1.02 cases per 100 PY [95% CI, 0.61-1.71 cases per 100 PY]; in 2005-2006, 0.63 cases per 100 PY [95% CI, 0.36-1.09 cases per 100 PY]). CONCLUSIONS: Although the CVD risk profile among patients in the Data Collection on Adverse Events of Anti-HIV Drugs Study has decreased since 1999, rates have remained relatively stable, possibly as a result of a more aggressive approach towards managing the risk of CVD.
Resumo:
284 million people worldwide suffered from type 2 diabetes mellitus (T2DM) in 2010, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy (DPN). Although DPN is the most common complication of diabetes mellitus and the leading cause of non-traumatic amputations its pathophysiology is still poorly understood. To get more insight into the molecular mechanism underlying DPN in T2DM, I used a rodent model of T2DM, the db/db mice.¦ln vivo electrophysiological recordings of diabetic animals indicated that in addition to reduced nerve conduction velocity db/db mice also present increased nerve excitability. Further ex vivo evaluation of the electrophysiological properties of db/db nerves clearly established a presence of the peripheral nerve hyperexcitability (PNH) phenotype in diabetic animals. Using pharmacological inhibitors we demonstrated that PNH is mostly mediated by the decreased activity of Kv1 channels. ln agreement with these data 1 observed that the diabetic condition led to a reduced presence of the Kv1.2 subunits in juxtaparanodal regions of db/db peripheral nerves whereas its mANA and protein expression levels were not affected. Lmportantly, I confirmed a loss of juxtaparanodal Kv1.2 subunits in nerve biopsies from type 2 diabetic patients. Together these observations indicate that the type 2 diabetic condition leads to potassium-channel mediated changes of nerve excitability thus identifying them as potential drug targets to treat sorne of the DPN related symptoms.¦Schwann cells ensheath and isolate peripheral axons by the production of myelin, which consists of lipids and proteins in a ratio of 2:1. Peripheral myelin protein 2 (= P2, Pmp2 or FABP8) was originally described as one of the most abundant myelin proteins in the peripheral nervous system. P2, which is a member of the fatty acid binding protein (FABP) family, is a 14.8 kDa cytosolic protein expressed on the cytoplasmic side of compact myelin membranes. As indicated by their name, the principal role of FABPs is thought to be the binding and transport of fatty acids.¦To study its role in myelinating glial cells I have recently generated a complete P2 knockout mouse model (P2-/-). I confirmed the loss of P2 in the sciatic nerve of P2-/- mice at the mRNA and protein level. Electrophysiological analysis of the adult (P56) mutant mice revealed a mild but significant reduction in the motor nerve conduction velocity. lnterestingly, this functional change was not accompanied by any detectable alterations in general myelin structure. However, I have observed significant alterations in the mRNA expression level of other FABPs, predominantly FABP9, in the PNS of P2-/- mice as compared to age-matched P2+/+ mice indicating a role of P2 in the glial myelin lipid metabolism.¦Le diabète de type 2 touche 284 million de personnes dans le monde en 2010 et son évolution conduit dans la moitié des cas à une neuropathie périphérique diabétique. Bien que la neuropathie périphérique soit la complication la plus courante du diabète pouvant conduire jusqu'à l'amputation, sa physiopathologie est aujourd'hui encore mal comprise. Dans le but d'améliorer les connaissances moléculaires expliquant les mécanismes de la neuropathie liée au diabète de type 2, j'ai utilisé un modèle murin du diabète de type 2, les souris db/db.¦ln vivo, les enregistrements éléctrophysiologiques des animaux diabétiques montrent qu'en plus d'une diminution de la vitesse de conduction nerveuse, les souris db/db présentent également une augmentation de l'excitabilité nerveuse. Des mesures menées Ex vivo ont montré l'existence d'un phénotype d'hyperexcitabilité sur les nerfs périphériques isolés d'animaux diabétiques. Grâce à l'utilisation d'inhibiteurs pharmacologiques, nous avons pu démontrer que l'hyperexcitabilité démontrée était due à une réduction d'activité des canaux Kv1. En accord avec ces données, j'ai observé qu'une situation de diabète conduisait à une diminution des canaux Kv1.2 aux régions juxta-paranodales des nerfs périphériques db/db, alors que l'expression du transcrit et de la protéine restait stable. J'ai également confirmé l'absence de canaux Kv1.2 aux juxta-paranoeuds de biopsies de nerfs de patients diabétiques. L'ensemble de ces observations montrent que les nerfs périphériques chez les patients atteints de diabète de type 2 est due à une diminution des canaux potassiques rapides juxtaparanodaux les identifiant ainsi comme des cibles thérapeutiques potentielles.¦Les cellules de Schwann enveloppent et isolent les axones périphériques d'une membrane spécialisée, la myéline, composée de deux fois plus de lipides que de protéines. La protéine P2 (Pmp2 "peripheral myelin protein 2" ou FABP8 "fatty acid binding protein") est l'une des protéines les plus abondantes au système nerveux périphérique. P2 appartient à la famille de protéines FABP liant et transportant les acides gras et est une protéine cytosolique de 14,8 kDa exprimée du côté cytoplasmique de la myéline compacte.¦Afin d'étudier le rôle de P2 dans les cellules de Schwann myélinisantes, j'ai généré une souris knockout (P2-/-). Après avoir validé l'absence de transcrit et de protéine P2 dans les nerfs sciatiques P2-/-, des mesures électrophysiologiques ont montré une réduction modérée mais significative de la vitesse de conduction du nerf moteur périphérique. Il est important de noter que ces changements fonctionnels n'ont pas pu être associés à quelconque changement dans la structure de la myéline. Cependant, j'ai observé dans les nerfs périphériques P2-/-, une altération significative du niveau d'expression d'ARNm d'autres FABPs et en particulier FABP9. Ce dernier résultat démontre l'importance du rôle de la protéine P2 dans le métabolisme lipidique de la myéline.
Resumo:
Leukocyte-derived microparticles (LMPs) may originate from neutrophils, monocytes/macrophages, and lymphocytes. They express markers from their parental cells and harbor membrane and cytoplasmic proteins as well as bioactive lipids implicated in a variety of mechanisms, maintaining or disrupting vascular homeostasis. When they carry tissue factor or coagulation inhibitors, they participate in hemostasis and pathological thrombosis. Both proinflammatory and anti-inflammatory processes can be affected by LMPs, thus ensuring an appropriate inflammatory response. LMPs also play a dual role in the endothelium by either improving the endothelial function or inducing an endothelial dysfunction. LMPs are implicated in all stages of atherosclerosis. They circulate at a high level in the bloodstream of patients with high atherothrombotic risk, such as smokers, diabetics, and subjects with obstructive sleep apnea, where their prolonged contact with the vessel wall may contribute to its overall deterioration. Numbering microparticles, including LMPs, might be useful in predicting cardiovascular events. LMPs modify the endothelial function and promote the recruitment of inflammatory cells in the vascular wall, necessary processes for the progression of the atherosclerotic lesion. In addition, LMPs favor the neovascularization within the vulnerable plaque and, in the ruptured plaque, they take part in coagulation and platelet activation. Finally, LMPs participate in angiogenesis. They might represent a novel therapeutic tool to reset the angiogenic switch in pathologies with altered angiogenesis. Additional studies are needed to further investigate the role of LMPs in cardiovascular diseases. However, large-scale studies are currently difficult to set up because microparticle measurement still requires elaborate techniques which lack standardization.
Resumo:
A mechanism of extraction of tubular membranes from a lipid vesicle is presented. A concentration gradient of anchoring amphiphilic polymers generates tubes from budlike vesicle protrusions. We explain this mechanism in the framework of the Canham-Helfrich model. The energy profile is analytically calculated and a tube with a fixed length, corresponding to an energy minimum, is obtained in a certain regime of parameters. Further, using a phase-field model, we corroborate these results numerically. We obtain the growth of tubes when a polymer source is added, and the budlike shape after removal of the polymer source, in accordance with recent experimental results.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.
Resumo:
During episodes of trauma carnitine-free total parenteral nutrition (TPN) may result in a reduction of the total body carnitine pool, leading to a diminished rate of fat oxidation. Sixteen patients undergoing esophagectomy were equally and randomly divided and received isonitrogenous (0.2 gN/kg.day) and isocaloric (35 kcal/kg.day TPN over 11 days without and with L-carnitine supplementation (12 mg/kg.day). Compared with healthy controls, the total body carnitine pool was significantly reduced in both groups prior to the operation. Without supplementation carnitine concentrations were maintained, while daily provision of carnitine resulted in an elevation of total carnitine mainly due to an increase of the free fraction. Without supplementation the cumulative urinary carnitine losses were 11.5 +/- 6.3 mmol corresponding to 15.5% +/- 8.5% of the estimated total body carnitine pool. Patients receiving carnitine revealed a positive carnitine balance in the immediate postoperative phase, 11.1% +/- 19.0% of the infused carnitine being retained. After 11 days of treatment comparable values for respiratory quotient, plasma triglycerides, free fatty acids, ketone bodies, and cumulative nitrogen balance were observed. It is concluded that in the patient population studied here carnitine supplementation during postoperative TPN did not improve fat oxidation or nitrogen balance.
Resumo:
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.
Resumo:
Introduction : La prévalence des maladies stéatosiques non alcooliques du foie augmente de manière exponentielle dans les pays industrialisés. Le développement de ces maladies se traduit par une stéatose hépatique fréquemment associée à une résistance à l'insuline. Cette résistance a pu être expliquée par l'accumulation intra-hépatocytaire de lipides intermédiaires tels que Céramides et Diacylglycérols. Cependant, notre modèle animal de stéatose hépatique, les souris invalidées pour la protéine hépatique « Microsomal Triglyceride Transfert Protein » (Mttp Δ / Δ), ne développent pas de résistance à l'insuline, malgré une augmentation de ces lipides intermédiaires. Ceci suggère la présence d'un autre mécanisme induisant la résistance à l'insuline. Matériels et méthodes : L'analyse Microarray du foie des souris Mttp Δ / Δ a montré une forte up-régulation des gènes « Cell-death Inducing DFFA-like Effector C (cidec) », « Lipid Storage Droplet Protein 5 (lsdp5) » et « Bernardinelli-Seip Congenital Lipodystrophy 2 Homolog (seipin) » dans le foie des souris Mttp Δ / Δ. Ces gènes ont été récemment identifiés comme codant pour des protéines structurelles des gouttelettes lipidiques. Nous avons testé si ces gènes jouaient un rôle important dans le développement de la stéatose hépatique, ainsi que de la résistance à l'insuline. Résultats : Nous avons démontré que ces gènes sont fortement augmentés dans d'autres modèles de souris stéatosées tels que ceux présentant une sur-expression de ChREBP. Dans les hépatocytes murins (AML12 :Alfa Mouse Liver 12), l'invalidation de cidec et/ou seipin semble diminuer la phosphorylation d'AKT après stimulation à l'insuline, suggérant une résistance à l'insuline. Chez l'homme, l'expression de ces gènes est augmentée dans le foie de patients obèses avec stéatose hépatique. De manière intéressante, cette augmentation est atténuée chez les patients avec résistance à l'insuline. Conclusion : Ces données suggèrent que ces protéines des gouttelettes lipidiques augmentent au cours du développement de la stéatose hépatique et que cette augmentation protège contre la résistance à l'insuline.
Resumo:
Skeletal muscle mitochondrial (Mito) and lipid droplet (Lipid) content are often measured in human translational studies. Stereological point counting allows computing Mito and Lipid volume density (Vd) from micrographs taken with transmission electron microscopes. Former studies are not specific as to the size of individual squares that make up the grids, making reproducibility difficult, particularly when different magnifications are used. Our objective was to determine which size grid would be best at predicting fractional volume efficiently without sacrificing reliability and to test a novel method to reduce sampling bias. Methods: ten subjects underwent vastus lateralis biopsies. Samples were fixed, embedded, and cut longitudinally in ultrathin sections of 60 nm. Twenty micrographs from the intramyofibrillar region were taken per subject at Ã-33,000 magnification. Different grid sizes were superimposed on each micrograph: 1,000 Ã- 1,000 nm, 500 Ã- 500 nm, and 250 Ã- 250 nm. Results: mean Mito and Lipid Vd were not statistically different across grids. Variability was greater when going from 1,000 Ã- 1,000 to 500 Ã- 500 nm grid than from 500 Ã- 500 to 250 Ã- 250 nm grid. Discussion: this study is the first to attempt to standardize grid size while keeping with the conventional stereology principles. This is all in hopes of producing replicable assessments that can be obtained universally across different studies looking at human skeletal muscle mitochondrial and lipid droplet content.
Resumo:
Oleoyl-estrone (OE) is an adipose-derived signal that decreases energy intake and body lipid, maintaining energy expenditure and glycemic homeostasis. Glucocorticoids protect body lipid and the metabolic status quo. We studied the combined effects of OE and corticosterone in adrenalectomized female rats: daily OE gavages (0 or 10 nmol/g) and slow-release corticosterone pellets at four doses (0, 0.5, 1.7, and 4.8 mg/d). Intact and sham-operated controls were also included. After 8 d, body composition and plasma metabolites and hormones were measured. OE induced a massive lipid mobilization (in parallel with decreased food intake and maintained energy expenditure). Corticosterone increased fat deposition and inhibited the OE-elicited mobilization of body energy, even at the lowest dose. OE enhanced the corticosterone-induced rise in plasma triacylglycerols, and corticosterone blocked the OE-induced decrease in leptin. High corticosterone and OE increased insulin resistance beyond the effects of corticosterone alone. The presence of corticosterone dramatically affected OE effects, reversing its decrease of body energy (lipid) content, with little or no change on food intake or energy expenditure. The maintenance of glycemia and increasing insulin in parallel to the dose of corticosterone indicate a decrease in insulin sensitivity, which is enhanced by OE. The reversal of OE effects on lipid handling, insulin resistance, can be the consequence of a corticosterone-induced OE resistance. Nevertheless, OE effects on cholesterol were largely unaffected. In conclusion, corticosterone administration effectively blocked OE effects on body lipid and energy balance as well as insulin sensitivity and glycemia.
Resumo:
En internet encontramos gran cantidad de información científico-técnica cuya validez no suele estar controlada por comités correctores. Para aprovechar estos recursos es necesario filtrar y facilitar el acceso del usuario a la información. En este artículo se expone la experiencia práctica en el desarrollo de una página WEB centrada en las actividades del grupo de investigación «Calidad Nutricional y Tecnología de los Lípidos». Los objetivos de esta página WEB fueron los siguientes: difusión de las actividades del grupo de investigación, aprovechar los recursos que ofrece internet y fomentar y facilitar su uso. Esta experiencia permitió presentar una metodología de trabajo eficaz para conseguir estos objetivos. Finalmente, se presentan un gran número de direcciones WEB agrupadas por apartados en el ámbito de los lípidos. Estas direcciones han sido rigurosamente seleccionadas, entre un gran número de referencias consultadas, siguiendo una serie de criterios que se discuten en este trabajo, para ofrecer aquellas que presentan un mayor interés práctico.
Resumo:
Lipid rafts, defined as domains rich in cholesterol and sphingolipids, are involved in many important plasma membrane functions. Recent studies suggest that the way cells handle membrane cholesterol is fundamental in the formation of such lateral heterogeneities. We propose to model the plasma membrane as a nonequilibrium phase-separating system where cholesterol is dynamically incorporated and released. The model shows how cellular regulation of membrane cholesterol may determine the nanoscale lipid organization when the lipid mixture is close to a phase separation boundary, providing a plausible mechanism for raft formation in vivo.