938 resultados para k-means clustering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to typify, through physicochemical parameters, honey from Campos do Jordão’s microrregion, and verify how samples are grouped in accordance with the climatic production seasonality (summer and winter). It were assessed 30 samples of honey from beekeepers located in the cities of Monteiro Lobato, Campos do Jordão, Santo Antonio do Pinhal e São Bento do Sapucaí-SP, regarding both periods of honey production (November to February; July to September, during 2007 and 2008; n = 30). Samples were submitted to physicochemical analysis of total acidity, pH, humidity, water activity, density, aminoacids, ashes, color and electrical conductivity, identifying physicochemical standards of honey samples from both periods of production. Next, we carried out a cluster analysis of data using k-means algorithm, which grouped the samples into two classes (summer and winter). Thus, there was a supervised training of an Artificial Neural Network (ANN) using backpropagation algorithm. According to the analysis, the knowledge gained through the ANN classified the samples with 80% accuracy. It was observed that the ANNs have proved an effective tool to group samples of honey of the region of Campos do Jordao according to their physicochemical characteristics, depending on the different production periods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: This study aimed to classify alcohol-dependent outpatients on the basis of clinical factors and to verify if the resulting types show different treatment retention. Methods: The sample comprised 332 alcoholics that were enrolled in three different pharmacological trials carried out at Sao Paulo University, Brazil. Based on four clinical factors problem drinking onset age, familial alcoholism, alcohol dependence severity, and depression - K-means cluster analysis was performed by using the average silhouette width to determine the number of clusters. A direct logistic regression was performed to analyze the influence of clusters, medication groups, and Alcoholics Anonymous ( AA) attendance in treatment retention. Results: Two clusters were delineated. The cluster characterized by earlier onset age, more familial alcoholism, higher alcoholism severity, and less depression symptoms showed a higher chance of discontinuing the treatment, independently of medications used and AA attendance. Participation in AA was significantly related to treatment retention. Discussion: Health services should broaden the scope of services offered to meet heterogeneous needs of clients, and identify treatment practices and therapists which improve retention. Information about patients' characteristics linked to dropout should be used to make treatment programs more responsive and attractive, combining pharmacological agents with more intensive and diversified psychosocial interventions. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study performed an exploratory analysis of the anthropometrical and morphological muscle variables related to the one-repetition maximum (1RM) performance. In addition, the capacity of these variables to predict the force production was analyzed. 50 active males were submitted to the experimental procedures: vastus lateralis muscle biopsy, quadriceps magnetic resonance imaging, body mass assessment and 1RM test in the leg-press exercise. K-means cluster analysis was performed after obtaining the body mass, sum of the left and right quadriceps muscle cross-sectional area (Sigma CSA), percentage of the type II fibers and the 1RM performance. The number of clusters was defined a priori and then were labeled as high strength performance (HSP1RM) group and low strength performance (LSP1RM) group. Stepwise multiple regressions were performed by means of body mass, Sigma CSA, percentage of the type II fibers and clusters as predictors' variables and 1RM performance as response variable. The clusters mean +/- SD were: 292.8 +/- 52.1 kg, 84.7 +/- 17.9 kg, 19249.7 +/- 1645.5 mm(2) and 50.8 +/- 7.2% for the HSP1RM and 254.0 +/- 51.1 kg, 69.2 +/- 8.1 kg, 15483.1 +/- 1 104.8 mm(2) and 51.7 +/- 6.2 %, for the LSP1RM in the 1RM, body mass, Sigma CSA and muscle fiber type II percentage, respectively. The most important variable in the clusters division was the Sigma CSA. In addition, the Sigma CSA and muscle fiber type II percentage explained the variance in the 1RM performance (Adj R-2 = 0.35, p = 0.0001) for all participants and for the LSP1RM (Adj R-2 = 0.25, p = 0.002). For the HSP1RM, only the Sigma CSA was entered in the model and showed the highest capacity to explain the variance in the 1RM performance (Adj R-2 = 0.38, p = 0.01). As a conclusion, the muscle CSA was the most relevant variable to predict force production in individuals with no strength training background.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’analisi istologica riveste un ruolo fondamentale per la pianificazione di eventuali terapie mediche o chirurgiche, fornendo diagnosi sulla base dell’analisi di tessuti, o cellule, prelevati con biopsie o durante operazioni. Se fino ad alcuni anni fa l’analisi veniva fatta direttamente al microscopio, la sempre maggiore diffusione di fotocamere digitali accoppiate consente di operare anche su immagini digitali. Il presente lavoro di tesi ha riguardato lo studio e l’implementazione di un opportuno metodo di segmentazione automatica di immagini istopatologiche, avendo come riferimento esclusivamente ciò che viene visivamente percepito dall’operatore. L’obiettivo è stato quello di costituire uno strumento software semplice da utilizzare ed in grado di assistere l’istopatologo nell’identificazione di regioni percettivamente simili, presenti all’interno dell’immagine istologica, al fine di considerarle per una successiva analisi, oppure di escluderle. Il metodo sviluppato permette di analizzare una ampia varietà di immagini istologiche e di classificarne le regioni esclusivamente in base alla percezione visiva e senza sfruttare alcuna conoscenza a priori riguardante il tessuto biologico analizzato. Nella Tesi viene spiegato il procedimento logico seguito per la progettazione e la realizzazione dell’algoritmo, che ha portato all’adozione dello spazio colore Lab come dominio su cu cui calcolare gli istogrammi. Inoltre, si descrive come un metodo di classificazione non supervisionata utilizzi questi istogrammi per pervenire alla segmentazione delle immagini in classi corrispondenti alla percezione visiva dell’utente. Al fine di valutare l’efficacia dell’algoritmo è stato messo a punto un protocollo ed un sistema di validazione, che ha coinvolto 7 utenti, basato su un data set di 39 immagini, che comprendono una ampia varietà di tessuti biologici acquisiti da diversi dispositivi e a diversi ingrandimenti. Gli esperimenti confermano l’efficacia dell’algoritmo nella maggior parte dei casi, mettendo altresì in evidenza quelle tipologie di immagini in cui le prestazioni risultano non pienamente soddisfacenti.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Negli ultimi decenni molti autori hanno affrontato varie sfide per quanto riguarda la navigazione autonoma di robot e sono state proposte diverse soluzioni per superare le difficoltà di piattaforme di navigazioni intelligenti. Con questo elaborato vogliamo ricercare gli obiettivi principali della navigazione di robot e tra questi andiamo ad approfondire la stima della posa di un robot o di un veicolo autonomo. La maggior parte dei metodi proposti si basa sul rilevamento del punto di fuga che ricopre un ruolo importante in questo campo. Abbiamo analizzato alcune tecniche che stimassero la posizione del robot in primo luogo nell’ambiente interno e presentiamo in particolare un metodo che risale al punto di fuga basato sulla trasformata di Hough e sul raggruppamento K-means. In secondo luogo presentiamo una descrizione generale di alcuni aspetti della navigazione su strade e su ambienti pedonali.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A non-hierarchical K-means algorithm is used to cluster 47 years (1960–2006) of 10-day HYSPLIT backward trajectories to the Pico Mountain (PM) observatory on a seasonal basis. The resulting cluster centers identify the major transport pathways and collectively comprise a long-term climatology of transport to the observatory. The transport climatology improves our ability to interpret the observations made there and our understanding of pollution source regions to the station and the central North Atlantic region. I determine which pathways dominate transport to the observatory and examine the impacts of these transport patterns on the O3, NOy, NOx, and CO measurements made there during 2001–2006. Transport from the U.S., Canada, and the Atlantic most frequently reaches the station, but Europe, east Africa, and the Pacific can also contribute significantly depending on the season. Transport from Canada was correlated with the North Atlantic Oscillation (NAO) in spring and winter, and transport from the Pacific was uncorrelated with the NAO. The highest CO and O3 are observed during spring. Summer is also characterized by high CO and O3 and the highest NOy and NOx of any season. Previous studies at the station attributed the summer time high CO and O3 to transport of boreal wildfire emissions (for 2002–2004), and boreal fires continued to affect the station during 2005 and 2006. The particle dispersion model FLEXPART was used to calculate anthropogenic and biomass-burning CO tracer values at the station in an attempt to identify the regions responsible for the high CO and O3 observations during spring and biomass-burning impacts in summer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Improvements in the analysis of microarray images are critical for accurately quantifying gene expression levels. The acquisition of accurate spot intensities directly influences the results and interpretation of statistical analyses. This dissertation discusses the implementation of a novel approach to the analysis of cDNA microarray images. We use a stellar photometric model, the Moffat function, to quantify microarray spots from nylon microarray images. The inherent flexibility of the Moffat shape model makes it ideal for quantifying microarray spots. We apply our novel approach to a Wilms' tumor microarray study and compare our results with a fixed-circle segmentation approach for spot quantification. Our results suggest that different spot feature extraction methods can have an impact on the ability of statistical methods to identify differentially expressed genes. We also used the Moffat function to simulate a series of microarray images under various experimental conditions. These simulations were used to validate the performance of various statistical methods for identifying differentially expressed genes. Our simulation results indicate that tests taking into account the dependency between mean spot intensity and variance estimation, such as the smoothened t-test, can better identify differentially expressed genes, especially when the number of replicates and mean fold change are low. The analysis of the simulations also showed that overall, a rank sum test (Mann-Whitney) performed well at identifying differentially expressed genes. Previous work has suggested the strengths of nonparametric approaches for identifying differentially expressed genes. We also show that multivariate approaches, such as hierarchical and k-means cluster analysis along with principal components analysis, are only effective at classifying samples when replicate numbers and mean fold change are high. Finally, we show how our stellar shape model approach can be extended to the analysis of 2D-gel images by adapting the Moffat function to take into account the elliptical nature of spots in such images. Our results indicate that stellar shape models offer a previously unexplored approach for the quantification of 2D-gel spots. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have performed quantitative X-ray diffraction (qXRD) analysis of 157 grab or core-top samples from the western Nordic Seas between (WNS) ~57°-75°N and 5° to 45° W. The RockJock Vs6 analysis includes non-clay (20) and clay (10) mineral species in the <2 mm size fraction that sum to 100 weight %. The data matrix was reduced to 9 and 6 variables respectively by excluding minerals with low weight% and by grouping into larger groups, such as the alkali and plagioclase feldspars. Because of its potential dual origins calcite was placed outside of the sum. We initially hypothesized that a combination of regional bedrock outcrops and transport associated with drift-ice, meltwater plumes, and bottom currents would result in 6 clusters defined by "similar" mineral compositions. The hypothesis was tested by use of a fuzzy k-mean clustering algorithm and key minerals were identified by step-wise Discriminant Function Analysis. Key minerals in defining the clusters include quartz, pyroxene, muscovite, and amphibole. With 5 clusters, 87.5% of the observations are correctly classified. The geographic distributions of the five k-mean clusters compares reasonably well with the original hypothesis. The close spatial relationship between bedrock geology and discrete cluster membership stresses the importance of this variable at both the WNS-scale and at a more local scale in NE Greenland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a method to detect Microcalcifications in Regions of Interest from digitized mammograms. The method is based mainly on the combination of Image Processing, Pattern Recognition and Artificial Intelligence. The Top-Hat transform is a technique based on mathematical morphology operations that, in this work is used to perform contrast enhancement of microcalcifications in the region of interest. In order to find more or less homogeneous regions in the image, we apply a novel image sub-segmentation technique based on Possibilistic Fuzzy c-Means clustering algorithm. From the original region of interest we extract two window-based features, Mean and Deviation Standard, which will be used in a classifier based on a Artificial Neural Network in order to identify microcalcifications. Our results show that the proposed method is a good alternative in the stage of microcalcifications detection, because this stage is an important part of the early Breast Cancer detection

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La planificación y las políticas de transporte no pueden descuidar la calidad del servicio, considerando que influye notablemente en el cambio modal del coche hacia otros medios de transporte más sostenibles. El concepto se aplica también a los intercambiadores de transporte público, los nodos del sistema donde se cruzan las distintas redes del transporte público y privado. Aunque se han logrado numerosos avances para medir y evaluar la calidad en el sector del transporte público, se han dedicado relativamente pocos esfuerzos a investigar estos aspectos relacionados con la calidad de los intercambiadores del transporte público. Este trabajo de investigación se concentra en la calidad del servicio de la transferencia modal en los intercambiadores interurbanos, según la perspectiva de los viajeros. Su objetivo es identificar los factores clave de la calidad del servicio y los perfiles de los viajeros en los intercambiadores. La investigación es exploratoria y ofrece información acerca de la percepción de los viajeros intermodales relacionada con los aspectos de la calidad, aportando nuevos elementos y datos para adentrarse en estudios más detallados. La metodología del trabajo combina técnicas de análisis estadístico multivariante para analizar los datos de las encuestas sobre la satisfacción de los clientes y se subdivide en tres etapas. En primer lugar, se ha implementado el análisis de correspondencias múltiples para explorar los constructos latentes relacionados con la satisfacción de las características cualitativas de los intercambiadores interurbanos, identificando así los factores clave de la calidad. En segundo lugar, se ha aplicado un análisis de conglomerados de k-medias sobre los factores clave de calidad para clasificar a los viajeros en grupos de usuarios de transportes homogéneos, de acuerdo con su percepción de satisfacción, identificando de este modo los perfiles de los viajeros. Por último, se han formulado sugerencias y recomendaciones sobre la calidad para respaldar la formulación de políticas, estableciendo las prioridades para los intercambiadores interurbanos. La metodología se aplicó en cuatro intercambiadores interurbanos (estaciones de ferrocarriles o de autobuses ) en Madrid, Zaragoza, Gothenburg y Lion, analizando los datos recogidos mediante una encuesta de satisfacción del cliente llevada a cabo en 2011 en los cuatro casos de estudio, donde se interconectan distintos medios de transporte público y privado, de corta y larga distancia. Se recogieron datos sobre la satisfacción de los viajeros con 26 criterios de calidad, así como información sobre aspectos socio-económicos y pautas de comportamiento de viajes. Mediante el análisis de correspondencias múltiples se identificaron 4-5 factores clave de calidad en cada intercambiador, que se asocian principalmente con el sistema de emisión de billetes, el confort y la interconexión, mientras que los viajeros no perciben los temas clásicos como la información. Mediante el análisis de conglomerados se identificaron 2-5 perfiles de viajeros en cada intercambiador. Se reconocieron dos grupos de viajeros en casi todos los casos de estudio: viajeros de cercanía/trabajadores y turistas. Por lo que concierne a las prioridades para apoyar a las partes interesadas en la formulación de políticas, la expedición de billetes es el factor clave para los intercambiadores interurbanos españoles, mientras que la interconexión y los aspectos temporales se destacan en los intercambiadores de Francia y Suecia. Quality of Service can not be neglected in public transport planning and policy making, since it strongly influences modal shifts from car to more sustainable modes. This concept is also related to Public Transport interchanges, the nodes of the transport system where the different sub-systems of public passenger transport and personal vehicles meet. Although a lot of progress has been generally done to measure and assess quality in public transport sector, relatively little investigation has been conducted on quality at PT interchanges. This research work focusses on Quality of Service in the use of transfer facilities at interurban interchanges, according to current travellers’ perspective. It aims at identifying key quality factors and travellers profiles at interurban interchanges. The research is exploratory and offers insight into intermodal travellers’ perception on quality aspects, providing new elements and inputs for more definitive investigation. The methodology of the work combines multivariate statistical techniques to analyse data from customer satisfaction surveys and is subdivided in three steps. Firstly, multiple correspondence analysis was performed to explore latent constructs as concern satisfaction of quality attributes at interurban interchanges, thus identifying the so-called Key Quality Factor. Secondly, k-means cluster analysis was implemented on the key quality factors to classify travellers in homogeneous groups of transport users, according to their perception of satisfaction, thus identifying the so-called Travellers Profiles. Finally, hints and recommendations on quality were identified to support policy making, setting priorities for interurban interchanges. The methodology was applied at four interurban interchanges in Madrid, Zaragoza, Gothenburg and Lyon, analysing the data collected through a customer satisfaction survey carried out in 2011 at the four railway or bus stations where different modes of public and private transport are interconnected covering both short and long trips. Data on travellers’ satisfaction with 26 quality attributes were collected, as well as information on socio-economical and travel patterns. Through multiple correspondence analysis were identified 4-5 key quality factors per interchange. They are mainly related to ticketing, comfort and connectivity, while classical issues, as information, are not perceived as important by travellers’. Through cluster analysis were identified 2-5 travellers profiles per interchange. Two groups of travellers can be found in almost all case studies: commuter / business travellers and holiday travellers. As regards the priorities to support stakeholders in policy making, ticketing is the key-issue for the Spanish interurban interchanges, while connectivity and temporal issues emerge in the French and Swedish case studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabajo esta orientado a resolver el problema de la caracterización de la copa de arboles frutales para la aplicacion localizada de fitosanitarios. Esta propuesta utiliza un mapa de profundidad (Depth image) y una imagen RGB combinadas (RGB-D), proporcionados por el sensor Kinect de Microsoft, para aplicar pesticidas de forma localizada. A través del mapa de profundidad se puede estimar la densidad de la copa y a partir de esta información determinar qué boquillas se deben abrir en cada momento. Se desarrollaron algoritmos implementados en Matlab que permiten además de la adquisición de las imágenes RGB-D, aplicar plaguicidas sólo a hojas y/o frutos según se desee. Estos algoritmos fueron implementados en un software que se comunica con el entorno de desarrollo "Kinect Windows SDK", encargado de extraer las imágenes desde el sensor Kinect. Por otra parte, para identificar hojas, se implementaron algoritmos de clasificación e identificación. Los algoritmos de clasificación utilizados fueron "Fuzzy C-Means con Gustafson Kessel" (FCM-GK) y "K-Means". Los centroides o prototipos de cada clase generados por FCM-GK fueron usados como semilla para K-Means, para acelerar la convergencia del algoritmo y mantener la coherencia temporal en los grupos generados por K-Means. Los algoritmos de clasificación fueron aplicados sobre las imágenes transformadas al espacio de color L*a*b*; específicamente se emplearon los canales a*, b* (canales cromáticos) con el fin de reducir el efecto de la luz sobre los colores. Los algoritmos de clasificación fueron configurados para buscar cuatro grupos: hojas, porosidad, frutas y tronco. Una vez que el clasificador genera los prototipos de los grupos, un clasificador denominado Máquina de Soporte Vectorial, que utiliza como núcleo una función Gaussiana base radial, identifica la clase de interés (hojas). La combinación de estos algoritmos ha mostrado bajos errores de clasificación, rendimiento del 4% de error en la identificación de hojas. Además, estos algoritmos de procesamiento de hasta 8.4 imágenes por segundo, lo que permite su aplicación en tiempo real. Los resultados demuestran la viabilidad de utilizar el sensor "Kinect" para determinar dónde y cuándo aplicar pesticidas. Por otra parte, también muestran que existen limitaciones en su uso, impuesta por las condiciones de luz. En otras palabras, es posible usar "Kinect" en exteriores, pero durante días nublados, temprano en la mañana o en la noche con iluminación artificial, o añadiendo un parasol en condiciones de luz intensa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to assess the effects of game timeouts on basketball teams? offensive and defensive performances according to momentary differences in score and game period. The sample consisted of 144 timeouts registered during 18 basketball games randomly selected from the 2007 European Basketball Championship (Spain). For each timeout, five ball possessions were registered before (n?493) and after the timeout (n?475). The offensive and defensive efficiencies were registered across the first 35 min and last 5 min of games. A k-means cluster analysis classified the timeouts according to momentary score status as follows: losing ( ?10 to ?3 points), balanced ( ?2 to 3 points), and winning (4 to 10 points). Repeated-measures analysis of variance identified statistically significant main effects between pre and post timeout offensive and defensive values. Chi-square analysis of game period identified a higher percentage of timeouts called during the last 5 min of a game compared with the first 35 min (64.999.1% vs. 35.1910.3%; x ?5.4, PB0.05). Results showed higher post timeout offensive and defensive performances. No other effect or interaction was found for defensive performances. Offensive performances were better in the last 5 min of games, with the least differences when in balanced situations and greater differences when in winning situations. Results also showed one interaction between timeouts and momentary differences in score, with increased values when in losing and balanced situations but decreased values when in winning situations. Overall, the results suggest that coaches should examine offensive and defensive performances according to game period and differences in score when considering whether to call a timeout.