955 resultados para intronic transcription
Resumo:
Neuropeptides and their receptors are present in human skin, and their importance for cutaneous homeostasis and during wound healing is increasingly appreciated. However, there is currently a lack of understanding of the molecular mechanisms by which their signaling modulates keratinocyte function. Here, we show that δ-opioid receptor (DOPr) activation inhibits proliferation of human keratinocytes, resulting in decreased epidermal thickness in an organotypic skin model. DOPr signaling markedly delayed induction of keratin intermediate filament (KRT10) during in vitro differentiation and abolished its induction in the organotypic skin model. This was accompanied by deregulation of involucrin (IVL), loricrin, and filaggrin. Analysis of the transcription factor POU2F3, which is involved in regulation of KRT10, IVL, and profilaggrin expression, revealed a DOPr-mediated extracellular signal-regulated kinase (ERK)-dependent downregulation of this factor. We propose that DOPr signaling specifically activates the ERK 1/2 mitogen-activated protein kinase pathway to regulate keratinocyte functions. Complementing our earlier studies in DOPr-deficient mice, these data suggest that DOPr activation in human keratinocytes profoundly influences epidermal morphogenesis and homeostasis.
Resumo:
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
The phytochrome family of photoreceptors (there are five phytochromes in Arabidopsis, named phyA to phyE) maximally absorbs red and far-red light and plays important functions throughout the life cycle of plants. Several recent studies have shown that multiple related bHLH (basic helix-loop-helix) class transcription factors play key roles in phytochrome signal transduction. Somewhat surprisingly these transcription factors primarily act as negative regulators of phytochrome signalling. Moreover, in some cases, the phytochromes inhibit those negative regulators.
Resumo:
Female-specific expression of the Xenopus laevis vitellogenin gene was reconstituted in vitro by addition of recombinant vaccinia-virus-produced estrogen receptor to nuclear extracts from male livers, in which this gene is silent. Transcription enhancement was at least 30 times and was selectively restricted to vitellogenin templates containing the estrogen-responsive unit. Thus, in male hepatocytes, estrogen receptor is the limiting regulatory factor that in the female liver controls efficient and accurate sex-specific expression of the vitellogenin gene. Furthermore, the Xenopus liver factor B, which is essential in addition to the estrogen receptor for the activation of this gene, was successfully replaced in the Xenopus extract by purified human nuclear factor I, identifying factor B of Xenopus as a functional homolog of this well-characterized human transcription factor.
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.
Resumo:
DNA methylation regulates many processes, including gene expression, by superimposing secondary information on DNA sequences. The conserved CcrM enzyme, which methylates adenines in GANTC sequences, is essential to the viability of several Alphaproteobacteria. In this study, we find that Caulobacter crescentus cells lacking the CcrM enzyme accumulate low levels of the two conserved FtsZ and MipZ proteins, leading to a severe defect in cell division. This defect can be compensated by the expression of the ftsZ gene from an inducible promoter or by spontaneous suppressor mutations that promote FtsZ accumulation. We show that CcrM promotes the transcription of the ftsZ and mipZ genes and that the ftsZ and mipZ promoter regions contain a conserved CGACTC motif that is critical to their activities and to their regulation by CcrM. In addition, our results suggest that the ftsZ promoter has the lowest activity when the CGACTC motif is non-methylated, an intermediate activity when it is hemi-methylated and the highest activity when it is fully methylated. The regulation of ftsZ expression by DNA methylation may explain why CcrM is essential in a subset of Alphaproteobacteria.
Resumo:
Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are "genomic fossils" valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome's structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction ( approximately 80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.
Resumo:
In the liver of oviparous vertebrates vitellogenin gene expression is controlled by estrogen. The nucleotide sequence of the 5' flanking region of the Xenopus laevis vitellogenin genes A1, A2, B1 and B2 has been determined. These sequences have been compared to each other and to the equivalent region of the chicken vitellogenin II and apo-VLDLII genes which are also expressed in the liver in response to estrogen. The homology between the 5' flanking region of the Xenopus genes B1 and B2 is higher than between the corresponding regions of the other closely related genes A1 and A2. Four short blocks of sequence homology which are present at equivalent positions in the vitellogenin genes of both Xenopus laevis and chicken are characterized. A short sequence with two-fold rotational symmetry (GGTCANNNTGACC) was found at similar positions upstream of the five vitellogenin genes and is also present in two copies close to the 5' end of the chicken apo-VLDLII gene. The possible functional significance of this sequence, common to liver estrogen-responsive genes, is discussed.
Resumo:
Approximately 520 Wilson disease-causing mutations in the ATP7B gene have been described to date. In this study we report DNA and RNA analyses carried out for molecular characterization of a consensus sequence splicing mutation found in homozygosity in a Swiss Wilson disease patient. RNA analysis of 1946 +6 T→C in both the peripheral lymphoblasts and liver resulted in the production in the propositus of only an alternative transcript lacking exons 6, 7, and 8 resulting most likely in alterations of cell biochemistry and disease. The patient presents an early form of severe hepatic disease characterized by hepatosplenomegaly, reduced hepatic function, anemia and thrombocytopenia indicating that 1946 +6 T→C is a severe mutation. Since identical results were obtained from both peripheral lymphoblasts and liver they also suggest that RNA studies of illegitimate transcripts can be safely used for molecular characterization of ATP7B splicing mutations, thus improving genetic counseling and diagnosis of Wilson disease. Moreover these studies, contribute to reveal the exact molecular mechanisms producing Wilson disease.
Resumo:
The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.
Resumo:
Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.
Resumo:
One approach to analyzing the molecular mechanisms of gene expression in vivo is to reconstitute these events in cell-free systems in vitro. Although there is some evidence for tissue-specific transcription in vitro, transcriptionally active extracts that mimic a steroid hormone-dependent enhancement of transcription have not been described. In the study reported here, nuclear extracts of liver from the frog Xenopus laevis were capable of estrogen-dependent induction of a homologous vitellogenin promoter that contained the estrogen-responsive element.
Resumo:
To determine the effect of aging on IFN-gamma-induced MHC class II antigen expression, we produced bone marrow¿derived macrophages in vitro. In these conditions, we analyzed the effect of aging on the genomic expression of macrophages without the influence of other cell types that may be affected by aging. Although macrophages from young and aged mice showed an identical degree of differentiation, after incubation with IFN-gamma, the expression at the cell surface of the IA complex and the levels of IAbeta protein and mRNA were lower in aged macrophages. Moreover, the transcription of the IAbeta gene was impaired in aged macrophages. The amount of transcription factors that bound to the W and X, but not to the Y, boxes of the IAbeta promoter gene was lower in aged macrophages. Similar levels of CIITA mRNA were found after IFN-gamma treatment of both young and aged macrophages. This shows that neither the initial cascade that starts after the interaction of IFN-gamma with the receptor nor the second signals involved in the expression of CIITA are impaired in aged macrophages. These data indicate that aging is associated with low levels of MHC class II gene induction by IFN-gamma because of impaired transcription.