980 resultados para interpolating MLS approximation
Resumo:
We apply Stochastic Dynamics method for a differential equations model, proposed by Marc Lipsitch and collaborators (Proc. R. Soc. Lond. B 260, 321, 1995), for which the transmission dynamics of parasites occurs from a parent to its offspring (vertical transmission), and by contact with infected host (horizontal transmission). Herpes, Hepatitis and AIDS are examples of diseases for which both horizontal and vertical transmission occur simultaneously during the virus spreading. Understanding the role of each type of transmission in the infection prevalence on a susceptible host population may provide some information about the factors that contribute for the eradication and/or control of those diseases. We present a pair mean-field approximation obtained from the master equation of the model. The pair approximation is formed by the differential equations of the susceptible and infected population densities and the differential equations of pairs that contribute to the former ones. In terms of the model parameters, we obtain the conditions that lead to the disease eradication, and set up the phase diagram based on the local stability analysis of fixed points. We also perform Monte Carlo simulations of the model on complete graphs and Erdös-Rényi graphs in order to investigate the influence of population size and neighborhood on the previous mean-field results; by this way, we also expect to evaluate the contribution of vertical and horizontal transmission on the elimination of parasite. Pair Approximation for a Model of Vertical and Horizontal Transmission of Parasites.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines Funktionsapproximators und dessen Verwendung in Verfahren zum Lernen von diskreten und kontinuierlichen Aktionen: 1. Ein allgemeiner Funktionsapproximator – Locally Weighted Interpolating Growing Neural Gas (LWIGNG) – wird auf Basis eines Wachsenden Neuralen Gases (GNG) entwickelt. Die topologische Nachbarschaft in der Neuronenstruktur wird verwendet, um zwischen benachbarten Neuronen zu interpolieren und durch lokale Gewichtung die Approximation zu berechnen. Die Leistungsfähigkeit des Ansatzes, insbesondere in Hinsicht auf sich verändernde Zielfunktionen und sich verändernde Eingabeverteilungen, wird in verschiedenen Experimenten unter Beweis gestellt. 2. Zum Lernen diskreter Aktionen wird das LWIGNG-Verfahren mit Q-Learning zur Q-LWIGNG-Methode verbunden. Dafür muss der zugrunde liegende GNG-Algorithmus abgeändert werden, da die Eingabedaten beim Aktionenlernen eine bestimmte Reihenfolge haben. Q-LWIGNG erzielt sehr gute Ergebnisse beim Stabbalance- und beim Mountain-Car-Problem und gute Ergebnisse beim Acrobot-Problem. 3. Zum Lernen kontinuierlicher Aktionen wird ein REINFORCE-Algorithmus mit LWIGNG zur ReinforceGNG-Methode verbunden. Dabei wird eine Actor-Critic-Architektur eingesetzt, um aus zeitverzögerten Belohnungen zu lernen. LWIGNG approximiert sowohl die Zustands-Wertefunktion als auch die Politik, die in Form von situationsabhängigen Parametern einer Normalverteilung repräsentiert wird. ReinforceGNG wird erfolgreich zum Lernen von Bewegungen für einen simulierten 2-rädrigen Roboter eingesetzt, der einen rollenden Ball unter bestimmten Bedingungen abfangen soll.
Resumo:
Dealing with latent constructs (loaded by reflective and congeneric measures) cross-culturally compared means studying how these unobserved variables vary, and/or covary each other, after controlling for possibly disturbing cultural forces. This yields to the so-called ‘measurement invariance’ matter that refers to the extent to which data collected by the same multi-item measurement instrument (i.e., self-reported questionnaire of items underlying common latent constructs) are comparable across different cultural environments. As a matter of fact, it would be unthinkable exploring latent variables heterogeneity (e.g., latent means; latent levels of deviations from the means (i.e., latent variances), latent levels of shared variation from the respective means (i.e., latent covariances), levels of magnitude of structural path coefficients with regard to causal relations among latent variables) across different populations without controlling for cultural bias in the underlying measures. Furthermore, it would be unrealistic to assess this latter correction without using a framework that is able to take into account all these potential cultural biases across populations simultaneously. Since the real world ‘acts’ in a simultaneous way as well. As a consequence, I, as researcher, may want to control for cultural forces hypothesizing they are all acting at the same time throughout groups of comparison and therefore examining if they are inflating or suppressing my new estimations with hierarchical nested constraints on the original estimated parameters. Multi Sample Structural Equation Modeling-based Confirmatory Factor Analysis (MS-SEM-based CFA) still represents a dominant and flexible statistical framework to work out this potential cultural bias in a simultaneous way. With this dissertation I wanted to make an attempt to introduce new viewpoints on measurement invariance handled under covariance-based SEM framework by means of a consumer behavior modeling application on functional food choices.
Resumo:
In technical design processes in the automotive industry, digital prototypes rapidly gain importance, because they allow for a detection of design errors in early development stages. The technical design process includes the computation of swept volumes for maintainability analysis and clearance checks. The swept volume is very useful, for example, to identify problem areas where a safety distance might not be kept. With the explicit construction of the swept volume an engineer gets evidence on how the shape of components that come too close have to be modified.rnIn this thesis a concept for the approximation of the outer boundary of a swept volume is developed. For safety reasons, it is essential that the approximation is conservative, i.e., that the swept volume is completely enclosed by the approximation. On the other hand, one wishes to approximate the swept volume as precisely as possible. In this work, we will show, that the one-sided Hausdorff distance is the adequate measure for the error of the approximation, when the intended usage is clearance checks, continuous collision detection and maintainability analysis in CAD. We present two implementations that apply the concept and generate a manifold triangle mesh that approximates the outer boundary of a swept volume. Both algorithms are two-phased: a sweeping phase which generates a conservative voxelization of the swept volume, and the actual mesh generation which is based on restricted Delaunay refinement. This approach ensures a high precision of the approximation while respecting conservativeness.rnThe benchmarks for our test are amongst others real world scenarios that come from the automotive industry.rnFurther, we introduce a method to relate parts of an already computed swept volume boundary to those triangles of the generator, that come closest during the sweep. We use this to verify as well as to colorize meshes resulting from our implementations.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H-infinity[(b) over bar : b has finite angular derivative everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra generated by the algebra of bounded analytic functions and the conjugates of Blaschke products with angular derivative finite everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.