972 resultados para interleukin 1 receptor 2
Resumo:
Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR4), is expressed on commensal colonic bacteria. In a number of tissues, LPS can act directly on epithelial cells to increase paracellular permeability. Such an effect in the colon would have an important impact on the understanding of normal homeostasis and of pathology. Our aim was to use a novel primary culture of colonic epithelial cells grown on Transwells to investigate whether LPS, or Pam(3)CSK( 4), an activator of TLR2, affected paracellular permeability. Consequently, [(14)C]-mannitol transfer and transepithelial electrical resistance (TEER) were measured. The preparation consisted primarily of cytokeratin-18 positive epithelial cells that produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited alkaline phosphatase activity and expressed TLR2 and TLR4. Tight junctions and desmosomes were visible by transmission electron microscopy. Basally, but not apically, applied LPS from Escherichia coli increased the permeability to mannitol and to a 10-kDa dextran, and reduced TEER. The LPS from Helicobacter pylori increased paracellular permeability of gastric cells when applied either apically or basally, in contrast to colon cells, where this LPS was active only from the basal aspect. A pan-caspase inhibitor prevented the increase in caspase activity caused by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. Synthetic Pam(3)CSK(4) in the basal compartment prevented all effects of basal E. coli LPS. In conclusion, LPS applied to the base of the colonic epithelial cells increased paracellular permeability by a mechanism involving caspase activation, suggesting a process by which perturbation of the gut barrier could be exacerbated. Moreover, activation of TLR2 ameliorated such effects.
Resumo:
Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that has a critical role in the regulation of glucose homeostasis, principally through the regulation of insulin secretion. The receptor systemis highly complex, able to be activated by both endogenous [GLP-1(1-36)NH2, GLP-1(1-37), GLP-1(7-36)NH2, GLP-1(7-37), oxyntomodulin], and exogenous (exendin-4) peptides in addition to small-molecule allosteric agonists (compound 2 [6,7-dichloro-2-methylsulfonyl-3-tertbutylaminoquinoxaline], BETP [4-(3-benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine]). Furthermore, the GLP-1R is subject to single-nucleotide polymorphic variance, resulting in amino acid changes in the receptor protein. In this study, we investigated two polymorphic variants previously reported to impact peptidemediated receptor activity (M149) and small-molecule allostery (C333). These residues were mutated to a series of alternate amino acids, and their functionality was monitored across physiologically significant signaling pathways, including cAMP, extracellular signal-regulated kinase 1 and 2 phosphorylation, and intracellular Ca2+ mobilization, in addition to peptide binding and cell-surface expression. We observed that residue 149 is highly sensitive to mutation, with almost all peptide responses significantly attenuated at mutated receptors. However, most reductions in activity were able to be restored by the small-molecule allosteric agonist compound 2. Conversely, mutation of residue 333 had little impact on peptide-mediated receptor activation, but this activity could not be modulated by compound 2 to the same extent as that observed at the wild-type receptor. These results provide insight into the importance of residues 149 and 333 in peptide function and highlight the complexities of allosteric modulation within this receptor system.
Resumo:
The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.
Resumo:
The presence of the conceptus in uterine cavity necessitates an elaborate network of interactions between the implanting embryo and a receptive endometrial tissue. We believe that embryo-derived signals play an important role in the remodeling and the extension of endometrial receptivity period. Our previous studies provided original evidence that human Chorionic Gonadotropin (hCG) modulates and potentiates endometrial epithelial as well as stromal cell responsiveness to interleukin 1 (IL1), one of the earliest embryonic signals, which may represent a novel pathway by which the embryo favors its own implantation and growth within the maternal endometrial host. The present study was designed to gain a broader understanding of hCG impact on the modulation of endometrial cell receptivity, and in particular, cell responsiveness to IL1 and the acquisition of growth-promoting phenotype capable of receiving, sustaining, and promoting early and crucial steps of embryonic development. Our results showed significant changes in the expression of genes involved in cell proliferation, immune modulation, tissue remodeling, apoptotic and angiogenic processes. This points to a relevant impact of these embryonic signals on the receptivity of the maternal endometrium, its adaptation to the implanting embryo and the creation of an environment that is favorable for the implantation and the growth of this latter within a new and likely hostile host tissue. Interestingly our data further identified a complex interaction between IL1 and hCG, which, despite a synergistic action on several significant endometrial target genes, may encompass a tight control of endogenous IL1 and extends to other IL1 family members.
Resumo:
The interleukin-4 (IL-4) signalling cascade has been identified as a pathway potentially important in the development of asthma. Genetic variants within this signalling pathway might contribute to the risk of developing asthma in a given individual. A number of polymorphisms have been described within the IL-4 receptor alpha (IL-4Ralpha) gene. In addition polymorphism occurs in the promoter for the IL-4 gene itself. This commentary accompanies a paper by C Ober et al describing the contribution of IL-4Ralpha polymorphism to susceptibility to asthma and atopy in the Hutterite population and other outbred populations collected during the collaborative studies on the genetics of asthma (CSGA) programme
Resumo:
The objective of this study is to determine if the effects of a high molecular weight sodium hyaluronate (HA) alone or in combination with triamcinolone acetate (TA) can mitigate chondrocyte proteoglycan catabolism caused by interleukin-1 (IL-1) administration. Chondrocytes were collected from fetlock joints of ten horses euthanized for reasons unrelated to joint disease. Chondrocyte pellets were treated with media (negative control); media containing IL-1 only (positive control); or media containing IL-1 with HA only (0.5 or 2.0 mg/mL), TA only (0.06 or 0.6 mg/mL), or HA (0.5 or 2.0 mg/mL) and TA (0.06 or 0.6 mg/mL) in combination. Chondrocyte pellets were assayed for newly synthesized GAG, total GAG content, total DNA content, and mRNA levels of collagen type II, aggrecan, and COX-2. The high concentration of HA (2.0 mg/mL) increased GAG synthesis while the high concentration of TA (0.6 mg/mL) decreased loss of GAG into the media. Both the high concentration of HA and TA increased the total GAG content within the pellet. There was no change in pellet DNA content with either treatment. TA reduced COX-2 mRNA levels as well as aggrecan and collagen type II expression. Treatment with HA had no effect on mRNA levels of COX-2, aggrecan or collagen type II. These results indicate that the high concentration of HA or TA alone or in combination will mitigate effects of IL-1 administration on proteoglycan catabolism of equine articular chondrocytes.
Resumo:
Introduction: Apert syndrome (AS) is a craniosynostosis condition caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2) gene. Clinical features include cutaneous and osseous symmetric syndactily in hands and feet, with variable presentations in bones, brain, skin and other internal organs. Methods: Members of two families with an index case of Apert Syndrome were assessed to describe relevant clinical features and molecular analysis (sequencing and amplification) of exons 8, 9 and 10 of FGFR2 gen. Results: Family 1 consists of the mother, the index case and half -brother who has a cleft lip and palate. In this family we found a single FGFR2 mutation, S252W, in the sequence of exon 8. Although mutations were not found in the study of the patient affected with cleft lip and palate, it is known that these diseases share signaling pathways, allowing suspected alterations in shared genes. In the patient of family 2, we found a sequence variant T78.501A located near the splicing site, which could interfere in this process, and consequently with the protein function.
Resumo:
Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.
Resumo:
PURPOSE: To compare intraocular pressure (IOP) rise in normal individuals and primary open-angle glaucoma patients and the safety and efficacy of ibopamine eye drops in different concentrations as a provocative test for glaucoma. METHODS: Glaucoma patients underwent (same eye) the ibopamine provocative test with two concentrations, 1% and 2%, in a random sequence at least 3 weeks apart, but not more than 3 months. The normal individuals were randomly submitted to one of the concentrations of ibopamine (1% and 2%). The test was considered positive if there was an IOP rise greater than 3 or 4 mmHg at 30 or 45 minutes to test which subset of the test has the best sensitivity (Se)/specificity (Sp). RESULTS: There was no statistically significant difference in any of the IOP measurements, comparing 1% with 2% ibopamine. The IOP was significantly higher at 30 and 45 minutes with both concentrations (p<0.001). The best sensitivity/specificity ratio was achieved with the cutoff point set as greater than 3 mmHg at 45 minutes with 2% ibopamine (area under the ROC curve: 0.864, Se: 84.6%; Sp:73.3%). All patients described a slight burning after ibopamine's instillation. CONCLUSION: 2% ibopamine is recommended as a provocative test for glaucoma. Because both concentrations have similar ability to rise IOP, 1% ibopamine may be used to treat ocular hypotony.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The Te(IV) atom in the title compound, [Te(C(4)H(9))(C(8)H(10)Br)Cl(2)] or C(12)H(19)BrCl(2)Te, is in a distorted psi-trigonal-bipyramidal geometry, with the lone pair of electrons projected to occupy a position in the equatorial plane, and with the Cl atoms being mutually trans [172.48 (4)degrees]. Close intramolecular [Te center dot center dot center dot Br = 3.3444 (18) angstrom] and intermolecular [Te center dot center dot center dot Cl = 3.675 (3) angstrom] interactions are observed. The latter lead to centrosymmetric dimers which assemble into layers in the bc plane. The primary connections between layers are of the type C-H center dot center dot center dot Cl.
Resumo:
The pyrrolidine-2,5-dione ring in the title compound, C(15)H(15)NO(6), is in a twisted conformation with the acetyl C atoms projecting to opposite sides of the ring. The acetyl groups lie to opposite sides of the five-membered ring. The benzene ring is roughly perpendicular to the heterocyclic ring, forming a dihedral angle of 76.57 (14)degrees with it. In the crystal, molecules are connected through a network of C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions.